Input-to-state stability of infinite-dimensional control systems
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
00102683-1.pdf | 870.68 kB | Adobe PDF | Anzeigen |
Sonstige Titel: | Eingang-Zustand-Stabilität der unendlichdimensionalen Kontrollsysteme | Autor/Autorin: | Mironchenko, Andrii | BetreuerIn: | Dashkovskiy, Sergey | 1. GutachterIn: | Dashkovskiy, Sergey | Weitere Gutachter:innen: | Wirth, Fabian | Zusammenfassung: | We define the notion of local ISS-Lyapunov function and prove, that existence of a local ISS-Lyapunov function implies local ISS (LISS) of the system. Then we consider infinite-dimensional systems generated by differential equations in Banach spaces. We prove, that an interconnection of such systems is ISS if all the subsystems are ISS and the small-gain condition holds. Next we show that a system is LISS provided its linearization is ISS. In the second part of the thesis we deal with infinite-dimensional impulsive systems. We prove, that existence of an ISS Lyapunov function (not necessarily exponential) for an impulsive system implies ISS of the system over impulsive sequences satisfying nonlinear fixed dwell-time condition. Also we prove, that an impulsive system, which possesses an exponential ISS Lyapunov function is uniform ISS over impulse time sequences, satisfying the generalized average dwell-time condition. Then we generalize small-gain theorems to the case of impulsive systems. |
Schlagwort: | input-to-state stability; Lyapunov functions; linearization; control theory; impulsive systems; infinite-dimensional systems; dwell-time conditions | Veröffentlichungsdatum: | 25-Mai-2012 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | URN: | urn:nbn:de:gbv:46-00102683-16 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
365
checked on 08.01.2025
Download(s)
188
checked on 08.01.2025
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.