Representation Theoretical Construction of The Classical Limit and Spectral Statistics of Generic Hamiltonian Operators
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
00010494.pdf | 936.09 kB | Adobe PDF | Anzeigen |
Sonstige Titel: | Darstellungstheoretische Konstruktion des klassischen Grenzfalls und Spektralstatistik generischer Hamiltonoperatoren | Autor/Autorin: | Schäfer, Ingolf ![]() |
BetreuerIn: | Oeljeklaus, Eberhard | 1. GutachterIn: | Oeljeklaus, Eberhard | Weitere Gutachter:innen: | Huckleberry, Alan | Zusammenfassung: | Starting with an operator in the universal enveloping algebra of a semi-simple, complex Lie group the nearest neighbor statistics of the spectra of this operator along a sequence of representations are discussed.After a short introduction in chapter 1 this problem is motivated by a general construction of the classical limit for quantum mechanical systems, which is adopted to this setting, in chapter 2. In chapter 3 it is shown that for simple operators, i.e., operator of the Lie algebra the nearest neighbor statistics along a sequence of irreducible representations converge to the Dirac measure. After a suitable completion of the universal enveloping algebra the convergence to Poisson statistics is proved in chapter 4 for the exponentials of generic operators. The proof makes use of a combinatorial inequality of the Katz-Sarnak type for tori, which is proved in chapter 5. In the appendix the necessary facts from group theory and the theory of nearest neighbor distributions are gathered. |
Schlagwort: | Classical Limit; Representation Theory; Random Matrix Theory | Veröffentlichungsdatum: | 9-Nov-2006 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | URN: | urn:nbn:de:gbv:46-diss000104949 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
273
checked on 03.04.2025
Download(s)
57
checked on 03.04.2025
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.