Learning and Using Multimodal Stochastic Models : A Unified Approach
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
00105528-1.pdf | 3.6 MB | Adobe PDF | Anzeigen |
Sonstige Titel: | Erlernen und Anwendung von multimodalen stochastischen Modellen : ein einheitlicher Ansatz | Autor/Autorin: | Edgington, Mark ![]() |
BetreuerIn: | Kirchner, Frank | 1. GutachterIn: | Kirchner, Frank | Weitere Gutachter:innen: | Beetz, Michael ![]() |
Zusammenfassung: | This dissertation presents a principled approach to representing and using instance-based knowledge. Perceptions and actions are probabilistically modelled in a unified structure which allows for simultaneous perception modelling and reasoning about desired actions. In particular, a new method for online instance-based learning of such models is presented and analyzed. This method, called Dynamic Gaussian Mixture Estimation (DGME), adapts a model's complexity to the process being modelled. The models produced by DGME are evaluated on several classification, prediction, and control applications, and its characteristics are compared with other state-of-the-art methods. In the context of control applications, an additional novel method, Gaussian Mixture Control (GMC), is introduced for precisely controlling systems that exhibit multimodality. |
Schlagwort: | Density Estimation; Online Learning; Bayesian Learning; Probabilistic Inference; Mixture Model; Cognitive Modeling; Robot Behavior and Control | Veröffentlichungsdatum: | 9-Sep-2016 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | URN: | urn:nbn:de:gbv:46-00105528-16 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
420
checked on 03.04.2025
Download(s)
91
checked on 03.04.2025
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.