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Abstract

This dissertation presents a principled approach to representing and using instance-based
knowledge. Perceptions and actions are probabilistically modelled in a unified structure
which allows for simultaneous perception modelling and reasoning about desired actions.
In particular, a new method for online instance-based learning of such models is presented
and analyzed. This method, called Dynamic Gaussian Mixture Estimation (DGME),
adapts a model’s complexity to the process being modelled. The models produced by
DGME are evaluated on several classification, prediction, and control applications, and
its characteristics are compared with other state-of-the-art methods. In the context of
control applications, an additional novel method, Gaussian Mixture Control (GMC), is
introduced for precisely controlling systems that exhibit multimodality.
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A Note On Notation

This document uses the following notation: vectors are written in lower-case bold (e. g. a),
components of a vector are indicated with subscripts in parentheses (e. g. a(1)), a specific
instance of a vector from a set of vectors (e. g. a training set of observation vectors)
is indexed using an index in parentheses as a superscript (e. g. a(1)), and matrices are
uppercase and bold (e. g. A).

All vectors are column-vectors unless transposed: a is a column vector, while aT is a row
vector.

A matrix component is indicated using a (row index, column index) subscript in paren-
theses (e. g. A(r,c)), row-vectors in a matrix are referred to by (row index, · ) subscripts
(A(r,·)), and column-vectors in a matrix use (·, column index) subscripts (A(·,c)). Block
submatrices of a matrix are indicated with a 4-tuple (r1, c1, r2, c2) subscript in paren-
theses (e. g. A(1,1,2,2) represents a the upper-left 2×2 block submatrix of A, and A(·,1,·,2)

represents a matrix containing the first and second columns of A).

All indices start at 1.

A matrix or vector may also have its subscript begin with a label or index. For example,
vDC,(1) represents the first component of the vector vDC . This can also be used, for
example, in the case of a matrix X =

[
v1 v2 v3

]
, where vi are column vectors. In this

case, v2,(3) would refer to the third component of vector v2. Likewise, for matrices, one
could write MQ,(5,5) to represent the (5,5) element of MQ.

Scalars and functions are not written in bold, and are indexed using subscripts.

Notation examples that include the conventions described above are summarized in the
following table:
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A NOTE ON NOTATION

Table 1: Examples of Notation used in this Thesis
a a column-vector
aT a row vector
a(7) the 7th vector in a set of vectors {a(i)}
a(1) the 1st component of vector a
v5,(3) the 3rd component of vector v5
A(r,·) the rth row-vector in matrix A
A(·,c) the cth column-vector in matrix A
A(1,1,2,2) the upper-left 2× 2 block submatrix of matrix A
A(·,2,·,4) a submatrix composed of column-vectors 2,3,4 of matrix A
MQ,(5,5) the (5,5) element of matrix MQ

I3 the 3× 3 identity matrix
a := f(a, b) the function f operates on a and b, and then overwrites a with f ’s output.[
va ∥ vb

]
a vector formed by concatenating va with vb

E[x] the expected value of vector x
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Summary of Contributions

The contributions of this thesis can be broken down into two main areas: density
estimation and control. Contributions in each area are considered in what follows.

Density Estimation A density estimation method, Dynamic Gaussian Mixture Es-
timation (DGME), was developed that exhibits the properties summarized in Table 2.
It distinguishes itself from the state of the art methods in that it (1) does not assume
stationarity of the modelled process, (2) adapts the model complexity in a data-driven
fashion, (3) has reduced computational complexity due to its semi-parametric nature, and
(4) locally adapts the bandwidth (i. e. covariance) of each individual mixture component.
The state-of-the-art kernel-based methods chosen for comparison are Adaptive Mixtures
(AM), Time-evolving Adaptive Mixtures (TEAM), and Online Kernel Density Estimation
(oKDE) (described in Priebe and Marchette, 1993, Szewczyk, 2005, and Kristan, 2010,
respectively).

Property AM TEAM oKDE DGME PF Based

Possible to work with non-stationary processes – ✓ – ✓ ✓

Model complexity adaptation ✓ –* ✓ ✓ ✓

Semi-parametric (vs. non-parametric) ✓ ✓ (hybrid) ✓ –

Per-component bandwidth adaptation ✓ ✓ – ✓ N/A
* An upper bound must be chosen on the number of components in order for the

garbage-collection stage to work.

Table 2: Characteristics of state-of-the-art online density-estimation methods.

The AM and oKDE methods assume that a stationary process is being modelled, which
raises the question of whether there is a significant advantage in using these methods
over traditional batch density-estimation methods (which also rest on the assumption of
stationarity). In contrast, the TEAM and DGME methods can both be configured so
that the model can gradually “forget” information that is deemed less important, or that
hasn’t been observed for a long time. The AM and oKDE methods share with DGME
the property that the model complexity is adapted to fit data as it is observed, with no
assumptions made on the maximum number of components that any model might have.
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SUMMARY OF CONTRIBUTIONS

The TEAM method, on the other hand, suffers from the need to identify an upper bound
on the number of components assumed to be in the “true” distribution being modelled.
If this bound is set too high, then the number of components in the model will always be
much higher than the necessary number of components. Furthermore, the claim that
TEAM is suitable for modelling non-stationary processes is incompatible with specifying
a mixture component limit, since a non-stationary process may change over time not
only in terms of its parameters, but also in terms of its complexity (which is correlated
with the number of components the model has).

Control A method of controlling systems which have been identified with DGME has
been developed, called Gaussian Mixture Control (GMC). The GMC Method distinguishes
itself from state of the art control methods primarily in the sense that it is able to control
systems exhibiting multimodal models. In other words, a system whose behavior may
fall under multiple distinct modes of operation can be controlled in order to maximize
the likelihood of achieving a desired outcome without needing to manually identify and
characterize each mode of operation. A further advantage of GMC is it’s ability to handle
complex and nonlinear1 systems. A majority of modern control methods assume that the
system to be controlled will either be intrinsically linear, or linearized using an inverse
function when the system is non-linear. While several physical systems can be made to
behave as a linear system, many physical (and non-physical2) systems exhibit nonlinear
properties which are difficult to linearize. To control these kinds of systems requires
control methods which are able to handle these nonlinearities. GMC takes advantage of
its ability to use several locally linear models to approximate nonlinear system behavior.
Table 3 compares features of four different control methods alongside GMC.

Property PID MPC SS GMC Switching SS

Handles linear / linearized systems ✓ ✓ ✓ ✓ ✓

Handles non-linear systems ✓ ✓

Handles multi-modal systems ✓ ✓

Uses uncertainty information ✓ ✓

Table 3: Characteristics of state-of-the-art control methods.

1A nonlinear system is characterized by a transfer function h where relations like y1 = h(x1) and
y2 = h(x2) don’t imply ay1 + by2 = h(ax1 + bx2).

2An example of a non-physical system is a business or economic process.
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Chapter 1

Introduction

1.1 Unified Prediction and Perception

In the past couple of decades there has been an increasing amount of research done which
suggests that it may be likely that the actions (and predictions that are used in selecting
actions) performed by humans are directly connected with perceptions, insofar as they
may stem from the same structures in the brain (see Hommel et al., 2001; Hesslow,
2012). One could therefore postulate that this is an important characteristic behind the
flexibility and power of the human mind. In particular, there is much research supporting
the importance of prediction in cognitive processes. As mentioned by Bubic, Von Cramon,
and Schubotz (2010), “predictive processing represents one of the fundamental principles
of neural computations [and] errors of prediction may be crucial for driving neural and
cognitive processes as well as behavior”. One of the motivations of the work in this thesis
is to find and exploit such a representation, where the representational structure can be
used for storing perceptions (having a memory-like role), and can simultaneously be used
for prediction, reasoning, and acting.

1.2 Lifelong Learning

In real-life scenarios, humans and animals tend to improve their models of the world in a
highly adaptive manner. An interesting question to consider is “how do humans model

1



1.2. LIFELONG LEARNING

their environment?” It is clear that whatever the modelling process used by human
beings is, it is dynamic in its ability to model new situations and reshape existing models
as new information becomes available. In contrast, mathematical modelling techniques
currently used in the scientific community are quite inflexible when it comes to reshaping
due to new information. Typically the modelling process goes something like this:

1. A human makes a decision about which domain s/he wishes to model, and considers
what kinds of mathematical models might best fit the chosen domain (e. g. a linear
model).

2. What is deemed to be a sufficient amount of data is collected in the chosen domain,
and the different selected models are fit to this data.

3. Each model is evaluated (e. g. using a technique such as cross-validation) in order
to assess the likelihood of a particular model given the collected data.

4. The highest-likelihood model is chosen and used for analysis and prediction.

While for many applications this is a perfectly legitimate approach to modelling, it is
not sufficient for “lifelong-learning” agents, which attempt to adapt their models of
the world to their observations over time. For such a system, we wish to approximate
human cognition, in which prior knowledge is combined with new observations to form
new knowledge – in other words, a Bayesian approach is suitable (see Austerweil et al.,
2015). Furthermore, it must be possible to reshape existing models without losing the
information that has been stored in them. This assertion is based on the assumption that
intelligent agents are physically incapable of storing individually every single observation
which they make during their lifetime. These observations must, therefore, be summarized
and compressed in some manner. The so-called “paradigm shift” which humans are
known to experience at different points in time supports the idea that a human can hold
multiple hypotheses simultaneously in his/her mind, and at some point decide to switch
from one to another. On the other hand, it is not uncommon for a person to start out
with one concept about the world, and later to slightly refine that concept (model).

In summary, intelligent agents need both the ability to simultaneously entertain multiple
hypotheses about the world, as well as the ability to refine and reshape (possibly combine)
existing hypotheses. Though it is not entirely clear how to best make use of multiple

2



1.3. COGNITIVE FRAMEWORK USED IN THIS THESIS

hypotheses for any given domain, one traditional approach is to use maximum likelihood.
Using a maximum likelihood criterion would result in a similar decision policy to the
one used in the previously enumerated modelling process, where the most likely model
is selected. Depending on a single model to understand one’s environment, however,
can have serious limitations – it is often beneficial, therefore to be able to reason by
using information from several models simultaneously. This property of simultaneously
maintaining and utilizing several hypotheses is already present in Gaussian Mixture
Models, in which each Gaussian distribution can be considered as a single (locally linear)
hypothesis. Most GMM based modelling approaches are limited in that:

1. the number of Gaussians (i. e. hypotheses) which can be entertained in a given
model is usually fixed a priori, preventing the model from expanding, should new
evidence become available that is unexplained by any of the existing Gaussians.

2. the dimensionality of the Gaussians in the model is fixed a priori, preventing the
model from becoming more expressive in terms of the breadth of perceptual data
that can be used.

The first of these limitations is addressed by the methods presented in this dissertation,
while the second limitation may be partially addressed by incorporating probability
distributions such as the Indian Buffet Process (Griffiths and Ghahramani, 2006).

1.3 Cognitive Framework used in this Thesis

Inspired by the previous observations about the requirements of a cognitive framework
for perception and prediction that approximates certain aspects of how the human
brain operates, this thesis focuses on a unified scheme by which perceptions can be
directly integrated into a sort of ’working memory’, which can simultaneously be used
for predictive activities. Cognitive frameworks which have been proposed up to this
point typically depend on separate representations for memory and predictive tasks,
meaning that there must be a conversion between these representations. When the
predictive facilities of a cognitive agent are used for actively controlling the agent’s
perception, separate representations become a bottleneck, requiring conversion between

3



1.3. COGNITIVE FRAMEWORK USED IN THIS THESIS

Figure 1.1: Overview of concepts relevant in this thesis.

representations after each new perception. For a constant stream of perceptions, this
overhead is unacceptable.

Figure 1.1 shows a graphical depiction of some of the important concepts used in this
dissertation. One of the core concepts that is integral to the new methods introduced
is the knowledge representation into which perceptions can be directly integrated. Si-
multaneously, this representation can be used for predicting future events based on
current observations of the world, or simulating events based on hypothetical scenarios.
The integration of perceptions is achieved using a novel density-estimation technique
introduced in this thesis named Dynamic Gaussian Mixture Estimation (DGME), which
is discussed in more detail in Chapter 3. Various predictive tasks are investigated in the
thesis, including regression and classification (see Chapter 4), anomaly-detection and
control (see Section 5.4).

The knowledge representation chosen for this framework is probabilistic, using a continu-
ous joint probability density function. The next section will elaborate on the rationale
for choosing such a representation.

4



1.4. PROBABILISTIC MODELLING AND CONTROL

1.4 Probabilistic Modelling and Control

Probabilistic models are becoming increasingly important in the task of modelling complex
processes. In the past, modelling efforts frequently made use of simple deterministic
models, typically in the form of a mathematical function approximating the relationship
between the input and output of a process. While this is sufficient for simple systems
having few components, the required effort to model a system in this way increases
exponentially as the number of components increases, due to the need to model not
only the individual components, but also interactions among the system’s different
components. Most probabilistic modelling techniques today are still largely based on this
classical modelling paradigm, where a fixed functional form is chosen a priori to represent
a system’s behavior, and in addition to learning/choosing this function’s parameters,
noise parameters are also chosen/learned which model the uncertainty around the points
represented by the function.

Despite the improvement over deterministic models, these models which consist only of
functions with noise parameters remain limited in the range of systems that they are
capable of accurately modelling. While a large majority of systems are able to be modelled
using such techniques, using these models in most modern-day control applications
requires strong assumptions about the needed characteristics of these systems, such as
the following:

• The modelled system must be linear and time-invariant.

• The system must be representable with a bijective mapping.

As a result, much effort is spent designing systems which meet these assumptions, and
working on methods for linearizing non-linear systems. However, nonlinear systems that
can be represented using multimodal probability distributions can offer certain efficiency
or performance benefits which are sacrificed when designing a system to be linear and
bijective. Furthermore, as a system’s complexity increases, it becomes increasingly difficult
to guarantee that these assumptions can be kept, due to nonlinear and multimodal effects
that arise as a result of inter-component interactions. It is therefore desirable to have a
control method that does not require a system to meet the above assumptions.

This thesis tries to address this problem by dealing with the particular class of stochastic

5



1.4. PROBABILISTIC MODELLING AND CONTROL

(e. g. probabilistic) models that can be represented as multimodal probability distri-
butions1. A multimodal distribution is characterized by having a probability density
function (pdf) which exhibits multiple modes – that is, instead of the pdf representing
one single maximum over the distribution’s support, several distinct maxima (i. e. modes)
are present, which are sufficiently “far”2 from each other to conclude that they cannot
be reasonably replaced by a unimodal distribution.

This thesis addresses two central topics related to multimodal models:

1. How to effectively learn multimodal models.

2. How to effectively use multimodal models (e. g. for prediction, pattern-discovery,
classification, and control).

Both of these topics will be discussed in detail.

The first topic, learning multimodal models, is discussed in Chapter 3, where two new
methods for building such models are presented.

The second topic, using multimodal models, is discussed in Chapter 4, which covers
the application of such models for pattern-discovery and classification, as well as in
Section 5.4, where a new control method is presented which allows a multimodal pdf of a
process to be used in order to accurately and predictably control the system.

This method makes a break from traditional control methods, in that it takes advantage of
the multimodal information contained in a model, and doesn’t depend on the assumption
that the behavior at any point in the process’ state-space can be modelled with a unimodal
distribution. The Mixture of Gaussians (MoG) model, also known as a Gaussian Mixture
Model (GMM), has been chosen as the basis of the knowledge representation structure
used by the new methods presented in this dissertation. The reasons for choosing this
instead of other representations such as a more general mixture model are threefold:

1. Using Gaussian mixture-components for the entire model allows for a principled

1Throughout this thesis, the terms “model” and “probability distribution” will be used interchange-
ably, when the meaning of “probability distribution” is clear from the context.

2Whether a distribution’s modes are far enough from each other depends on the characteristics of the
process being modelled. These can be determined either manually or by applying a suitable heuristic.

6
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decision making policy regarding whether or not to update an existing component
with new observations, and when to create new components in the model.

2. Gaussians are mathematically convenient, providing simple closed-form solutions to
calculating conditional and marginal probability densities. This allows for efficient
and accurate calculations.

3. Arbitrary density functions can be represented as a weighted sum of Gaussians (i. e. a
GMM). Thus, if a method supports adapting the number of mixture components
to the observations, the assumption that the data must be Gaussian-distributed is
not required.

Section 2.2.2 serves as an introduction to the basics of GMMs, and discusses the factors
involved in using them for modelling.

1.5 Summary

In this chapter, I have motivated the need for a unified and flexible framework for
knowledge representation, capture, and use. Additionally, a case has been made for using
a Gaussian Mixture Model as the basis for such a representation. The remaining chapters
provide a foundation for understanding the techniques used in this thesis, and present a
detailed explanation, analysis, and evaluation of the new methods contributed by this
thesis.

Chapter 2 reviews the most important topics and works related to this thesis, including
model representations, as well as modelling, control, and regression techniques. The first
major contribution of this thesis, the Dynamic Gaussian Mixture Estimation (DGME)
algorithm, is presented in Chapter 3. This algorithm is used to perform online “black-box”
modelling of processes.

After a model has been acquired, it is helpful to be able to do something with it. Chapter 4
and sections 5.3 and 5.4 present different ways of making use of a model learned with
DGME.

Prediction and classification techniques and examples are presented in Chapter 4. On

7



1.5. SUMMARY

the other hand, Section 5.3 addresses the topics of robot-localization control. In contrast
to the control method presented in this chapter, a further contribution of this thesis is
presented in Section 5.4: a novel and robust control technique, called Gaussian Mixture
Control (GMC), which makes intelligent use of a model’s multimodality.
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Chapter 2

Foundations

2.1 Model Representations

At the heart of any cognitive system is its ability to model (whether explicitly or implicitly)
its world, so that predictions and intelligent decisions can be made based on this model.
All such models depend on the existence of some underlying representation by which the
model stores knowledge. This section reviews several of the most popular knowledge-
representation schemes that are used with continuous-valued data1, and compares their
suitability for use in different kinds of modelling applications. The representations can
roughly be categorized in terms of each of the following characteristics:

• Linear / Nonlinear

• Local / Global

• Probabilistic / Deterministic

• Parametric / Non-parametric / Semi-parametric

These characteristics, and the representations that can be associated with them, are
discussed in the following subsections. Table 2.1 shows an overview of all the models
discussed, and the characteristics each possesses.

1Because the methods in this thesis work with continuous-valued data, we only consider continuous-
valued representations in this section.
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Table 2.1: Model Representation Characteristics: a summary of various model representations and their characteristics.
Representation Characteristics

Representation
Linear (L) /
Non-Linear
(NL)

Local (L) /
Global (G)

Probabilistic (P) /
Deterministic (D)

Parametric (P)/
Non-parametric
(N)

Single Gaussian L G P P
GMM NL approx. L P Semi-parametric
Unscented
Kalman Filter

NL approx. G P P

SVM NL G D P
RBF Network NL approx. L P Semi-parametric
Classical Physics
Eqns

Both G D P

Particle Filter NL L P N
Kalman Filter L G P P

10



2.1. MODEL REPRESENTATIONS

2.1.1 Linear / Nonlinear

Linear model representations are characterized by the assumption that the process being
modelled possesses a linear characteristic. In other words, the relationships between
variables used to represent the observations (i. e. inputs, outputs, and environmental
state) can be treated as linear. In contrast, nonlinear representations take account of
nonlinearities in observations of the process.

An example of a linear model is a single-Gaussian model, whose covariance matrix models
the linear dependencies (i. e. correlations) between the components of the observation-
space (i. e. the support of the distribution). Despite the fact that individual Gaussians are
linear, mixtures of Gaussians are capable of accurately approximating nonlinear processes.
Another representation which captures the nonlinearities of a process is the unscented
Kalman filter, which models nonlinearities in terms of sigma points (see (Sebastian Thrun,
Burgard, and Fox, 2005)). Underlying this model, however, is the linear Kalman filter
model, where the process nonlinearities have been linearized through the use of sigma
points.

2.1.2 Local / Global

Global modelling techniques can roughly be identified as those that provide a single
equation to represent the relationships between process-variables over the entire space
on which these variables are defined. This equation describes a global trend that is
assumed to remain consistent over a model’s support. Such models differ from local
models which, though they can be defined over the entire space of the process-variables,
have fundamentally different equations describing the model behavior depending on the
region of this variable space that is “active” (i. e. relevant for control or prediction because
of the current state of the process) at a given point in time. Such models, whether
they are defined over the entire variable space, or only some subregion of this space, are
collectively referred to as local models, because they operate differently depending on
the local region of variable space which is currently relevant.

Support vector machines are an example of a of global modelling technique. Though
in general, they are used for classification, and not prediction, they represent a process
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2.1. MODEL REPRESENTATIONS

globally, and do not have region-specific classification behavior. Instead, they attempt to
maximize the separation between class-boundaries for all training examples.

On the other hand, models such as GMMs and Radial Basis Functions (RBFs) are good
examples of local models, due to the “local” nature of their underlying components,
whose values taper off as an observation vector moves farther away from the Gaussian or
basis-function’s center. Likewise, the methods that use such models can be considered to
be local.

When considering probabilistic representations, one can furthermore draw a connection
between a model’s globality / locality and a model’s unimodality / multimodality. Multi-
modal models (in the probabilistic sense of multimodality) can typically be associated
with locality, where each mode corresponds to a local region. Unimodal models, on the
other hand, are more closely related to global models, even if they are most valid around
the distribution’s first-order statistical moment (i. e. mean).

2.1.3 Probabilistic / Deterministic

Probabilistic modelling techniques are characterized by the explicit modelling of a process’
uncertainty and/or variance. When a process is stochastic in nature, it does not behave
identically each time it finds itself in a certain (modelled) state. Because it is difficult –
perhaps impossible – to fully observe the complete state of a (continuous) process, there
will always be some (perceived) stochastic behavior of the process. Whether the process
is considered stochastic or not, essentially depends on whether the perceived stochasticity
is deemed to play an important role with respect to the goals behind the modelling.

The stochasticity of a system is typically interpreted in two ways (which can be seen as
opposite sides of the same coin):

1. Variance: Different outcomes represent a “spread” of outcomes which the process
exhibits (with respect to the expected value of an outcome).

2. Uncertainty: Different outcomes represent a measure of how certain (or likely) a
given measurement is.

12



2.1. MODEL REPRESENTATIONS

Though both of these interpretations are valid, in multimodal pdfs, there is an additional
concept that has not received much treatment in the literature. While the occurrence
of a set of observations that are “near” to each other in a metric sense represents the
variance of this observation around the “center” of these observations, the existence
of multiple centers introduces the concept of confidence. Confidence can be thought
of as a measure of the overall likelihood that a measurement will belong to a given
mode (i. e. that it is near2 the center of a particular mode). The model can specify that
it has higher confidence in some modes than in other modes. Similar to models that
use transition-probabilities to describe transitions between discrete states, the concept
of confidence also specifies a probability over a set of discrete modes. In contrast to
probabilistic modelling techniques, deterministic techniques ignore the above-mentioned
stochastic characteristics of a process. A simple example of a deterministic technique
is a process that is modelled in terms of classical physics equations, where none of
the variables are random-variables (i. e. variables modelled as having some probability
distribution).

2.1.4 Parametric / Non-parametric

Contrary to intuition, parametric models are not distinguished from non-parametric
models by the existence of parameters in the model. Instead, they are distinguished by
the number of parameters in the model with respect to the model’s complexity.

A parametric model generally possesses a fixed number of parameters, which (globally)
represent the behavior of a process. In contrast, a non-parametric model typically adds
new parameters as the number of observations increase. A particle-filter is an example of
a nonparametric modelling technique, where particles are very closely connected with
individual observations. Kalman filters, on the other hand, are parametric in the sense
that the number of parameters required to specify the filter is fixed.

In addition to parametric and non-parametric methods, there exists a third classification of
modelling methods with respect to the number of parameters they have: semi-parametric.
The idea behind semi-parametric methods is that instead of generating parameters for
every (recent) observation, the method summarizes the observations locally, and thus the

2Being “near” a center is relative to the variance around the center. A metric which encapsulates
this concept is the Mahalanobis distance.
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number of parameters in the model grows significantly more slowly than the number of
parameters in a non-parametric method would grow. A Gaussian Mixture Model serves
as a good example of a semi-parametric modelling method.

2.2 Density Estimation

In this section we consider a few methods that are commonly used for density estimation.
A basic density estimation method familiar to most people is the histogram. In the case of
histograms, the space spanned by the observation vectors is divided into ’bins’. Whenever
an observation occurs which happens to fall into one of the bins, the value associated
with the corresponding bin (initially zero) is incremented. After enough observations,
the bin values begin to represent the probability density of an observation. A problem
with histograms is that the bin boundaries are arbitrarily determined (they depend on
the selected resolution of the histogram), and these boundaries may not allow the density
to be properly represented. As an example, see Figure 2.1, which shows how a histogram
differs significantly from the true density when a bin boundary lies in the center of a
mode.

Fortunately there are several other density estimation methods available which avoid the
problems associated with bin boundary locations. Some of the more common methods
are discussed in the following subsections.

2.2.1 Kernel Density Estimation

A straightforward method known as Kernel Density Estimation (KDE) offers a significant
improvement over histograms in terms of the accuracy with which a density can be
estimated. The reason it is called Kernel Density Estimation is because it requires the
selection of a kernel function K (also known as a Parzen Window (Parzen, 1962)). A
kernel is any function that takes a single argument (typically representing a distance),
and that returns a scalar (typically representing a weight). This function evaluates the
probability density at a given point. Specifically, given a set of observation data vectors
D = {d1, d2, · · · , dM}, the (unnormalized) probability density at a point q is the sum of
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2.2. DENSITY ESTIMATION

Figure 2.1: Illustration of one weakness of histograms: when a bin boundary
divides a mode of the true density, the resulting histogram estimate
(based on randomly sampled data from the red Gaussian curve) can
give an incorrect indication of where the maximum occurs.

the kernel function evaluated over all distances between q and each observed point:

p(q) ∝
M∑

i=1
K(∥q − di∥/h). (2.2.1)

Here, h is a bandwidth parameter that influences the distance metric.

Note that if the chosen kernel function is a Gaussian density function, then

K(x) = N(x− µ; 0, Σ), (2.2.2)

and the pdf represented using this kernel with KDE has a form identical to an N -com-
ponent GMM, under the constraint that all component weights are identical. In both
cases (a KDE with Gaussian kernel, and a GMM), it is also possible to apply a k-Near-
est-Neighbors (kNN) type approach to evaluating the density, in which case (2.2.1)
becomes
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p(q) ∝
∑
i∈N

K(∥q − di∥/h), (2.2.3)

whereN is a set representing some neighborhood of points around q. In practice, choosing
an appropriately sized neighborhood will give nearly the same results as summing over all
data points, because the contribution of any Gaussian function whose mean is far from
the query point is approximately zero. The key to making this approach computationally
feasible is indexing the points or Gaussians in such a way that the neighborhood of a
certain query point can be quickly determined.

Note that in (2.2.2), the covariance-matrix parameter of the kernel function need not
be constant, in general. Instead, the “shape” of the covariance matrix must be selected
or computed according to some chosen covariance function. There are a few different
approaches to selecting the covariance matrix: (1) use a fixed covariance matrix, (2)
fit each covariance matrix to the local density around the observation, using a local
density estimate from the k nearest neighbors, or (3) fit each covariance matrix to the
local density around each particular observation, using a local density estimate from the
nearest neighbors within a certain fixed-size neighborhood. These three methods are
illustrated in Figure 2.2.

2.2.2 Estimating Densities with Gaussian Functions

The Gaussian probability distribution is commonly used to estimate densities. Depending
on the dimensionality of the process being modelled, the univariate (i. e. 1-dimensional)
or multivariate Gaussian pdf is utilized, and depending on the complexity of the process,
either a single Gaussian function, or a mixture of Gaussian functions can be used.

2.2.2.1 1-dimensional Gaussian

The well known 1-dimensional Gaussian (a.k.a. Normal) probability density function
(pdf) can look like one of several “bell curves”, as shown in Figure 2.3. The defining
statistics of a 1-dimensional Gaussian pdf are the mean µ, and the variance σ. We
can think of the pdf as a way of describing the outcome of a particular event that is
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2.2. DENSITY ESTIMATION

Figure 2.2: Different ways of choosing a covariance matrix for Gaussian-kernel
KDE (shown in 1D for clarity). The 1D data is plotted along the
y = 0.02 axis. Shown are the normalized KDE functions for the
case where (1) the covariance is a fixed σ2, (2) the covariance varies
based on the k nearest neighbors, and (3) the covariance varies
based on all neighbors within a fixed-neighborhood of x± r.

repeated multiple times. If the repeated event is, for example, the measurement of
the temperature at some location under certain conditions, then the outcome will be a
scalar value representing the measured temperature. The mean gives us a sense of the
most commonly occurring outcome3, and the variance helps describe the amount that a
particular outcome will vary from the mean.

3In the case of a Gaussian function, the mean is always identical to the median and mode.
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Figure 2.3: A 1D Gaussian pdf with µ = 0 and σ = 1.

2.2.2.2 2-dimensional Gaussian

While a 1-dimensional Gaussian pdf is useful in modelling events that make a single
measurement, if we wish to model a series of events, each involving 2 or more measurements
(e. g. temperature and pressure), then a multi-dimensional Gaussian pdf can be used.
An example of a 2-dimensional Gaussian pdf is shown in Figure 2.4, where the two
measurements are represented by the two random variables X and Y . Notice the
analog between the bell-curve in the 1-dimensional case, and the “bell-surface” in the
2-dimensional case. Just as the shape of the bell-curve in the 1-dimensional case depends
on the value of σ, for the 2-dimensional case, the bell-surface shape depends on three
values: σX , σY , and σXY . The σX value represents the 1-dimensional σ value for the
X measurement (as if we were only taking that measurement, and not measuring Y ).
Similarly, σY represents the 1-dimensional σ value for the y measurement. The σXY

value is what distinguishes a 1-dimensional Gaussian pdf from a 2-dimensional Gaussian
pdf. It represents the correlation4 between X and Y . Correlation can be understood in
relation to the mean values of X and Y , which are µX and µY , respectively.

If, after taking several measurements of X and Y , one observes that Y − µY is often

4The term correlation is used loosely here, to mean the co-occurrence of random events. It does
not refer to the Pearson Correlation Coefficient. There is, however, a simple relationship between the
correlation matrix P and the covariance matrix Σ: P = D−1ΣD−1 where D = (diag(Σ))1/2.
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around twice the value of X − µX , then an appropriate value for σXY is 2. If, on the
other hand, one was to observe that Y − µY is often around one half the value of
X − µX , but having the opposite sign, then an appropriate value for σXY is −0.5. In
the first case, σXY ≈ 2 means that X and Y are positively correlated. Likewise, when
σXY ≈ −0.5, X and Y are negatively correlated. If σXY ≈ 0, there is (almost) no
correlation between X and Y . Note that this does not imply that these two random
variables can be considered to be statistically independent of one another (i. e. that the
measurement of one variable has no bearing on the likelihood of what the other variable’s
measured value will be). Independent variables have zero correlation, but zero correlation
does not require independence.

2.2.2.3 N-dimensional Gaussian

As the number of measurements involved in a random process’ event increases, so does
the dimension of the multivariate Gaussian required to model such a random process.

While the 1-dimensional Gaussian pdf equation has the form

fX(x; µ, σ) = 1
(2πσ2)1/2 e− 1

2σ2 (x−µ)2
, (2.2.4)

the N -dimensional Gaussian pdf equation is written using the N-dimensional column
vectors x and µ, and the N ×N matrix Σ as

fX(x; µ, Σ) = 1
(2π)N/2

1
∥Σ∥1/2 e− 1

2 (x−µ)T Σ−1(x−µ). (2.2.5)

The column-vector µ is called the mean vector, and the matrix Σ is called the covariance
matrix.

For a 2-dimensional Gaussian pdf, N = 2, and the mean vector looks like

µ =
⎡⎣µX

µY

⎤⎦ , (2.2.6)
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Figure 2.4: A 2D Gaussian pdf with µ = (0, 0) and Σ = I2.

and the covariance matrix looks like

Σ =
⎡⎣ σX σXY

σY X σY

⎤⎦ . (2.2.7)

Notice that this matrix contains all of the values mentioned previously as needed for
determining the bell-surface shape. In addition to those mentioned previously, there is
the lower-left element of the matrix, σY X . Because correlation between two variables is a
symmetric function, the value of σY X is the same as the value of σXY .
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For an N -dimensional Gaussian pdf, we replace the two random variables X and Y of
the 2-dimensional case with N random variables in the N -dimensional random vector
X =

[
X1 X2 · · · XN

]T
. The mean vector now looks like

µ =

⎡⎢⎢⎢⎢⎢⎢⎣
µ1

µ2
...

µN

⎤⎥⎥⎥⎥⎥⎥⎦ (2.2.8)

and the covariance matrix looks like

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ11 σ12 · · · σ1N

σ21 σ22
...

... . . .
σN1 · · · σNN

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (2.2.9)

Notice that the only correlations represented in this matrix are between pairs of random
variables. Also, as with the 2-dimensional case, the entries below the diagonal are
symmetric with those above the diagonal. If we map all of the non-redundant values in
µ and Σ to a single parameter vector Θ, then the number of parameters, ∥Θ∥, needed to
represent a unimodal multivariate Gaussian function is

∥Θ∥ =
parameters in µ

N +

parameters in Σ  [
N + N(N − 1)

2

]

= N(N + 3)
2 .

(2.2.10)

Therefore, the storage complexity of a unimodal N-dimensional Gaussian pdf is O(N2) if
we place no constraints on the independence of the random variables being modelled.
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2.2.2.4 Gaussian Mixtures

While a unimodal Gaussian pdf can represent random processes that have only one
neighborhood of commonly observed measurement values (i. e. the measured values tend
to fall within some neighborhood around µ), there are several processes for which this
assumption is too restrictive. Take as a simple example a 3-dimensional process exhibiting
behavior approximating that of an exclusive-or function (which we represent with the ⊕
binary operator). In this case, the observation vector can take on (within some tolerance)
the values

X ∈ {
[
0 0 0

]T
,
[
0 1 1

]T
,
[
1 0 1

]T
,
[
1 1 0

]T
}, (2.2.11)

where each vector has the form
[
X1 X2 X1 ⊕X2

]T
. Each vector component takes on

one of the Boolean values 1 or 0, indicating true or false, respectively. If we were to try
to fit the parameters of a 3-dimensional Gaussian to represent this process, we would
end up with something similar to the Gaussian depicted in Figure 2.5, which has the
following parameters5:

µ =
[
0.4676 0.4803 0.4417

]T
(2.2.12)

and

Σ =

⎡⎢⎢⎢⎣
0.2518 0.0306 0.0101
0.0306 0.2525 0.0175
0.0101 0.0175 0.249

⎤⎥⎥⎥⎦ . (2.2.13)

If this fitted Gaussian were subsequently used in order to predict the value of X3 = X1⊕X2

given the values of X1 and X2 (how this is done is discussed in detail in Section 4.2), the
values predicted are shown in Table 2.2. This clearly show that the model has failed to

5These parameters were estimated using 100 vectors uniformly selected from among the four vectors
in (2.2.11), with 0.05 · U(0, 1) noise added to each, where U is a uniform random variable distributed
over the interval [0, 1).
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Figure 2.5: An attempt to model the XOR relationship using a single 3-
dimensional Gaussian pdf. The smaller blue points represent the
function z = x ⊕ y, and the larger red ellipsoid represents the 1-
σ equiprobability surface of the Gaussian which is estimating the
density of noisy [x y z]T points.

adequately represent the relationship between the variables.

In order to handle more complex processes such as this, one can use a Gaussian Mixture
Model (GMM), which consists of multiple Gaussian functions, each having their own set of
parameters. Most complex processes can be decomposed into several linear subprocesses
which are active in some subregion of the overall observation space. Each of these
subprocesses can be modelled by one of the Gaussian functions in the mixture model.

For example, a 2-component GMM can be fit to the XOR data that failed to be represented
with a single Gaussian. The resulting model is depicted in Figure 2.6, and the prediction
results are in Table 2.3.

A GMM represents a probability density function p(x), and can be thought of as a set of
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Table 2.2: Results of predicting X1 ⊕ X2 after it has been modelled using
a single Gaussian whose components are fit to the noisy data[
X1 X2 X1 ⊕X2

]T
. Prediction results are poor since a single

Gaussian is only able to model linear relationships, and ⊕ is a nonlin-
ear function.

X1 X2 True X1 ⊕X2 Predicted X1 ⊕X2

0 0 0 0.3952
0 1 1 0.4608
1 0 1 0.4274
1 1 0 0.493

Table 2.3: Results of predicting X1 ⊕ X2 after it has been modelled using a
2-component GMM whose components are fit to the noisy data[
X1 X2 X1 ⊕X2

]T
. Prediction results are good since the ⊕ func-

tion can be represented by two linear relationships, one for each state
of the X1 parameter.

X1 X2 True X1 ⊕X2 Predicted X1 ⊕X2

0 0 0 0.0051
0 1 1 0.9335
1 0 1 0.9481
1 1 0 0.005

“weighted Gaussian” pairs,

G ≡ {(g1(x), w1), (g2(x), w2), . . . , (gm(x), wm)}, (2.2.14)

where each gi is a distinct Gaussian pdf, and each wi is an integer value that designates
the weight that gi has in the model. The GMM pdf function is calculated as

p(x) =
m∑

i=1
ŵi gi(x), (2.2.15)

where each function gi(x) is a multivariate Gaussian distribution:

gi(x) = f
(i)
X (x) ∼ N (µi, Σi), (2.2.16)
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Figure 2.6: Modelling the XOR relationship using a 2-component mixture of
3-dimensional Gaussian pdfs. The smaller blue points represent the
function z = x⊕ y, and the larger red ellipsoids (one is very narrow)
represent the 1-σ equiprobability surface of each Gaussian.

and its corresponding normalized weighting factor is

ŵi = wi /
m∑

k=1
wk. (2.2.17)

To properly estimate the density of a process using a GMM, it is necessary to make use
of some kind of fitting algorithm that will provide good estimates of all of the GMM’s
parameters. One fairly popular fitting algorithm is known as Expectation Maximization.
In Chapter 3, an alternative fitting algorithm for estimating GMM parameters, Dynamic
Gaussian Mixture Estimation (DGME), is presented, and is a key contribution of this
dissertation.
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2.2.2.5 Expectation Maximization

The Expectation Maximization (EM) algorithm was first introduced by Dempster, Laird,
and Rubin (1977). The EM technique is a general concept that can be applied in
several different contexts. The technique involves two steps, not surprisingly called
the Expectation step, and the Maximization step. The idea is that some fixed set of
observation data x is available, and a chosen6 family of probability distributions (or
mixture of distributions), which is parameterized using a set of unknown parameters θ.
The desired result of the EM algorithm is to determine an optimal7 parameter vector, θ∗,
which will cause the probability distribution to best explain the observation data. In order
to determine this optimal parameter vector, an initial (probably non-optimal) parameter
vector θ(0) is first chosen. Using this parameter vector, an equation is constructed that
represents the expected likelihood of the data given some arbitrary set of parameter
values θ̂:

f(x, θ) = EZ [L(x | θ)] =
∫

p(z|θ)L(x|z, θ) dz (2.2.18)

The expectation is over a probability distribution that may include latent variables Z,
and that may depend on a particular set of parameter values. The previously chosen
parameter values will be used in this pdf if they play a role in it.

After the expected value function has been determined, it is maximized with respect to
θ: a new θ value is found that maximizes the expected likelihoods determined by the
previous ’best’ θ value.

2.3 Why use Gaussian Mixture Models?

Depending upon the task at hand, GMMs may be very suitable for representing a
model and producing inferences from this model. The reasons for this are threefold:
representational power, locally distinct contributions to the density, and closed-form

6The selection of this probability distribution can be completely arbitrary, though it is clearly
preferable to choose a distribution family which one believes will be able to adequately represent the
data.

7The EM algorithm will not escape local optima, so the final parameter values which the EM
algorithm converges to may only be locally optimal.
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computations (i. e. no sampling required).

Despite the basis function for a GMM being the Gaussian (i. e. Normal) pdf, GMMs
are flexible in the kinds of pdfs they can represent or approximate. As the number of
components increases towards infinity, a GMM is capable of representing any arbitrary
probability density surface (Dasgupta and Raftery, 1998; Fraley and Raftery, 1998).

In practice, however, the fit depends on the kind of distribution one wishes to approximate.
For example, the Weibull distribution is a pdf commonly used for modelling failure rates.
It’s mathematical form is

f(x) =

⎧⎪⎪⎨⎪⎪⎩
a

λ

(
x

λ

)a−1
exp{−(x/λ)a} x ≥ 0

0 x < 0
(2.3.1)

where a is the shape parameter, and λ is the scale parameter.

In Figure 2.7, a 7-component GMM is used to approximate a Weibull distribution where
a = 1.5 and λ = 1. The GMM follows the general trend of the Weibull distribution,
but suffers from having a “wavy” shape which is not as smooth as the approximated
function.

Furthermore, the Gaussian function is a local function, in that its values rapidly approach
zero as the point it is evaluated at moves further from the mean. This property means
that when Gaussians are used as mixture components, each mixture component becomes
’responsible’ for a given neighborhood of the pdf’s support. Because of this, it is possible
to model systems which have extremely different behavior under different conditions, so
long as these conditions are treated as random variables that are part of the model.

But one might still ask, “What is so special about the Gaussian function? Couldn’t
one use, for example, a Poisson distribution?” The answer is that the Gaussian pdf
belongs to a family of distributions known to be self-conjugate distributions, which have
the unique property that when a conditional probability is calculated, the resulting
conditional (i. e. posterior) pdf also has the same form (in this case, Gaussian) as the
unconditional (i. e. prior) distribution, only with different parameters. This also holds
true for marginalization, and as a result, when determining a conditional pdf, numerical
integration can be avoided, reducing the overall computational effort required. Instead of
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Figure 2.7: An example in which a GMM has approximated a Weibull distribution
with a=1.5, based on 10000 randomly drawn samples. Individual
Gaussian components, scaled by their weights, are drawn as dotted
lines.

needing to use monte-carlo based numerical integration in order to calculate the posterior
with Bayes theorem as

posterior  
p(y | x) =

likelihood  
p(x | y)

prior  
p(y)∫

p(x | y)p(y) dy  
evidence

, (2.3.2)

the posterior pdf can be calculated in one step using closed-form equations for the
posterior pdf parameters in terms of the parameters of the likelihood, prior, and evidence
(see (4.2.2) for an example of this).
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Chapter 3

Dynamic Gaussian Mixture
Estimation

This chapter introduces one of the main contributions of this thesis: a density-estimation
technique named Dynamic Gaussian Mixture Estimation (DGME). First, a motivation
for the technique will be provided, after which DGME will be formally presented in terms
of its operation, and an explanation of the different parameters that affect the way it
behaves when building a model. Finally, the method’s performance will be demonstrated
by comparing it to the performance of other density estimation methods.

3.1 Challenges with Existing Density Estimation
Methods

When modelling a process’ density from a very large number of observations, the density
estimation methods discussed in Section 2.2 require either a large amount of storage (in
the case of KDE), or a large amount of processing (in the case of the EM). Furthermore,
both methods require the a priori selection of parameters, requiring knowledge of the
process being modelled (KDE requires the selection of a bandwidth parameter, and EM
requires the selection of the number of Gaussian components in the model, as well as
regularization parameters).

The difficulty in requiring these a priori parameters is that one of the goals
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of density estimation involves finding out what number of components would
be appropriate to model a particular process, which precludes knowing this
information in advance. One way to handle this problem is to run a method several
times with varying numbers of components, and based on the results to select an optimal
number of components that minimizes some goodness-of-fit cost function. Unfortunately,
running a method several times requires even more processing time. It would be preferable
to have a method that can provide reasonable parameter estimates without extensive
storage and/or processing requirements.

3.2 Main Concept Behind DGME

The density estimation algorithm presented in this dissertation, Dynamic Gaussian
Mixture Estimation (DGME), seeks to reduce the need for significant amounts of prior
knowledge about a process being modelled, and to be efficient in terms of the amount
of processing required for the algorithm to run and the amount of storage required to
model the observed data.

One of the fundamental assumptions made by the DGME algorithm is that observations
are not stored in memory, and must be assimilated into a model at the time they are
observed. Traditional batch algorithms like Expectation Maximization are unable to
function under this assumption, and require that all the observed data be cached.

At its core, the basic design behind of the DGME algorithm is elegant and intuitive. As
each new observation is encountered, an assessment is made as to whether it fits well into
the existing model or not. This assessment serves as the basis for making the do-merge
decision: if the observation does fit well into the existing model, then the parameters
of one or more of the existing components of the model are adjusted to better explain
the observation. If it does not fit well, then a new component is added to the model to
account for the observation. Mathematically speaking, we can define a likelihood function
Li(x) for the ith Gaussian component of the current model which measures how well an
observation fits into this component. By additionally defining a likelihood threshold, Lth,
we can write the do-merge decision in terms of these likelihoods as
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The do-merge decision criterion

max
i

Li(x)  
Lmax

≥ Lth, (3.2.1)

in which we’ve defined Lmax as the maximum value of Li(x) for any i.

This general idea is summarized in Algorithm 1. The main algorithm is comprised
of four important subroutines, whose behaviors affect the overall performance of the
method when applied in a given scenario. The GET_LIKELIHOOD_THRESHOLD subroutine
and the GET_MAX_PENALIZED_LIKELIHOOD subroutine compute Lth and Lmax, respec-
tively, and these values are compared as in (3.2.1) to decide whether merging the
observations is required. After this decision has been made, either the MERGE_OBS or
the ADD_NEW_COMPONENT subroutine will be executed in order to update the model with
the observation. Each of these supporting subroutines is described in more detail in
Section 3.8.

Algorithm 1: Pseudocode for Overall DGME Algorithm
input : a single observation vector x

initial covariance magnitude σ2
0

maximum covariance magnitude σ2
max

Mahalanobis radius rM

Result: Parameters of model are updated so that it estimates the density of x and all
previously observed data.

Function DGME_UPDATE_FROM_OBS(x, σ2
0, σ2

max, rM )
if x is first observation for model then

ADD_NEW_COMPONENT(x, σ2
0 I) ; // I is an identity matrix

nf ← the number of features in x;
Lth ← GET_LIKELIHOOD_THRESHOLD(nf, σ2

max);
else

// get the maximum likelihood and the index i of the component having
this maximum.

i, Lmax ← GET_MAX_PENALIZED_LIKELIHOOD(x, σ2
max, rM );

if Lmax ≥ Lth then
MERGE_OBS(i, x);

else
ADD_NEW_COMPONENT(x, σ2

0 I);
end

end
end
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3.3. DISTANCE-BASED LIKELIHOOD FUNCTIONS

3.3 Distance-based Likelihood Functions

We will now consider some specific forms that the GET_LIKELIHOOD_THRESHOLD and
GET_MAX_PENALIZED_LIKELIHOOD subroutines can take on. We will begin by considering
what a sensible merging behavior defined by the do-merge decision criterion should look
like. One of the dangers of a density-estimation method that can repeatedly merge new
observations into existing mixture components is that the size of the neighborhood over
which a component is active can become extremely large. In this case, the benefits of
having a mixture of local components are diminished. Therefore, it is desirable to place
some kind of guarantee that each component has “jurisdiction” over a limited region of
the support space. In other words, we would like to place an upper bound on the extent
to which a component’s “shape”1 can stretch in any given direction.

The question we will now consider is, how can we define Lth and Li(x) in order to limit
a component’s “shape”? To work towards an answer to this question, we will first explore
what happens when we define the do-merge decision criterion so that new observations
are merged when they lie within a fixed Mahalanobis distance2 from at least one of the
existing model components. Such a do-merge decision can be defined mathematically in
terms of Lth and Li(x) as:

The do-merge decision likelihood functions for merging when an observation is
within a Mahalanobis distance of rM

Lth = −rM and (3.3.1)

Li(x) = −
√

(x− µi)T Σ−1
i (x− µi) (3.3.2)

Figure 3.1 provides a graphical explanation of this criterion. Shown in the figure is a
2D two-component model, where each ellipse represents an equiprobability contour of a
component. The points along each ellipse have a Mahalanobis distance of 1 from the

1When a component’s “shape” is mentioned in this dissertation, or its “size” growing or shrinking,
this is an informal way of referring to the shape of a 1-σ equiprobability ellipse associated with the
component’s covariance matrix. Likewise, any time a covariance’s “shape” or “size” is mentioned in this
dissertation, it is referring to the shape or size of the 1-σ equiprobability ellipse.

2The Mahalanobis distance of a point x with respect to a Gaussian component is defined as√
(x− µ)T Σ−1(x− µ), which can also be written as

√
−2 ln p(x; µ, Σ)
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Figure 3.1: Depiction of the do-merge decision criterion defined by (3.3.1)
and (3.3.2) when rM = 1. Each ellipse represents an equiprob-
ability contour of a 2D GMM component, where the points along the
ellipse have a Mahalanobis distance of 1. If an observation occurs
at a or c, it will be merged into components 1 or 2, respectively. If
an observation occurs at b, a new component will be added to the
model.

corresponding component’s mean. If we let rM = 1 in (3.3.1), then the model-update
action taken will differ depending on which region of the figure an observation point is
contained in. The point labeled a would be merged into the component with mean µ1,
while the point labeled b would cause a new component to be created in the model, and
the point labeled c would be merged into the component with mean µ2. In summary,
any point within a Mahalanobis distance of rM from a mean µi will be merged into
component i, whereas if a point is not within a Mahalanobis distance of rM from any of
the component means, a new component will be created that represents the point.

The Mahalanobis-distance based likelihood function defined in (3.3.2) is intuitive, ensuring
that Lj(x) > Lk(x) when component j explains the observation x better than component
k does. Though intuitive, a Mahalanobis-based likelihood also has some issues that we
must handle. The first problem is that though the intent is to provide a fixed limit to the
shape of each component, the limit will decrease as the number of merged observations
increases, resulting in potentially more components than desired in the model.
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The second problem is that without some kind of regularization, Σ can become singular,
such that when (x−µ) is in the null-space of Σ, the likelihood Li(x) becomes −∞. This
makes it possible for observations that are truly “near”3 a component’s mean to appear
“far” from it, and to not end up being merged into it when they should. Both of these
problems will be addressed in the following subsections.

3.4 Effect of Observation Quantity on the Merge
Boundary

Though the do-merge decision criterion defined in (3.3.1) and (3.3.2) correctly implements
the merge behavior described in Figure 3.1, this does not guarantee that the upper-bound
on how far a covariance matrix is allowed to “stretch” will remain constant. In other words,
even if observation values which are as “far” away from a component as possible (given
the do-merge decision with rM = 1) are merged again and again into the component, the
maximum “stretching” of the component will not remain constant. As an example, if
we start with a single univariate component having µ = 0 and σ = 1, and repeatedly
choose a maximal observation4 which still qualifies to be merged under this do-merge
decision criterion, then the σ values decrease as the number of observations merged (N)
increases. In other words, when rM = 1 in (3.3.1), the tight upper-bound on the stretch
will inevitably decrease as N increases. This behavior is shown in Figure 3.2.

Though σ decreases as N increases in Figure 3.2 (where rM = 1), it is possible to influence
this trend by modifying the value of rM in (3.3.1). The longer-term σ trend resulting
from rM values of 0.9, 1, and 1.1 is shown in Figure 3.3. Note how initially σ will decrease
regardless of the value of rM . For increasing N values where N > 5, however, the σ

values for rM = 1 begin to flatten out, while for rM > 1, σ increases, and for rM < 1,
σ decreases. These trends are explored in more detail in Figure 3.4. The fact that σ

decreases initially, independent of the value of rM or the initial σ value, guarantees that
each component will occupy a restricted neighborhood of the observation space, and not
spread uncontrollably. Because of this, the GMMs which result when applying DGME

3Here, “nearness” is measured in terms of the Mahalanobis distance that an observation has with
respect to a Gaussian component.

4In these analyses, every “maximal observation” that is chosen lies in the same direction from the
component’s mean.
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Figure 3.2: Result of repeatedly merging observations into a 1D Gaussian pdf
with a mean marked with the blue +. Each new observation xnext

(shown as a red ×) is chosen as a maximal value that doesn’t exceed
the do-merge decision threshold. Note that the quantity σ decreases
as N , the number of observations represented by the model, increases.
The do-merge decision criterion used here is −

√
(x− µ)2/σ2 > −1.

end up with a smaller amount of bias than would otherwise occur when one tries to
model nonlinear processes with “more global” linear models.

3.4.1 Extension to Multidimensional Components

The results for the univariate case shown in Figures 3.3 and 3.4 can also be extended
to the case when we have multivariate Gaussian components. To see how they apply,
we must consider the relationship of the multidimensional Mahalanobis distance and
the unidimensional Mahalanobis distances for each dimension. It is possible to view any
arbitrary covariance matrix Σ as a rotated version of a diagonal covariance matrix Λ
(e. g. by diagonalizing Σ so that Σ = UΛU−1 where U is a unitary matrix containing
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Figure 3.3: The standard-deviation (
√

σ2) of a single 1D Gaussian pdf vs. the
number of “maximal” observations (N) that have been incorporated
into the Gaussian’s parameter estimates. Each new observation is a
maximal value that doesn’t exceed the do-merge decision threshold.
As the value of rM used in (3.3.1) increases with respect to rM = 1,
so does the slope of the line approached by the

√
σ2 vs. N curve.

Likewise, when rM < 1, the asymptotic slope decreases.

column eigenvectors of Σ). Considering this, then any results related to the effect that
merging “maximal” observations into a diagonal-covariance mixture component has on
the component over time can be applied to a component with an arbitrary covariance
matrix.

If we constrain our multidimensional component to have a diagonal covariance matrix,

36
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Figure 3.4: The rate-of-change of the standard-deviation (σ) values plotted in
Figure 3.3 (note that a higher range of N values are plotted here).
The asymptotic limit of σ is reached most quickly when rM = 1.

we can write the squared Mahalanobis distance to a point x as

d2
M = (µ− x)T Σ−1(µ− x)

= (µ1 − x1)2

σ2
1

+ (µ2 − x2)2

σ2
2

+ · · ·+ (µN − xN)2

σ2
N

= d2
M,1 + d2

M,2 + · · ·+ d2
M,N .

(3.4.1)

where d2
M,i is the squared Mahalanobis distance of the ith element of x with respect

to a pdf where all dimensions besides the ith have been marginalized out of the full
multidimensional pdf. In other words, the squared multidimensional Mahalanobis distance
is the sum of the squared unidimensional Mahalanobis distances for each individual
dimension.

Let us assume that the 1st vector component has the largest individual covariance
(i. e. σ2

1 ≥ σ2
i : i ̸= 1). In this case, an x vector that is considered maximal (i. e. that

37



3.5. LIKELIHOOD FUNCTION SINGULARITIES AND REGULARIZATION

causes dM = dM,thresh) will have the form (x1, 0, · · · , 0). When all xi : i ̸= 1 are set
to 0, then based on (3.4.1), dM = dM,1. Therefore, choosing x1 so that it satisfies the
constraint dM,1 = dM,thresh also satisfies the constraint dM = dM,thresh. Because of this,
we can directly use the results in Figures 3.3 and 3.4 to understand what happens to the
shape of a multidimensional component as new observations are merged into it – for a
particular dimension, its shape will be affected in the same way, being dependent on the
value rM (i. e. dM,thresh) that is chosen.

3.5 Likelihood Function Singularities and
Regularization

One issue with defining the likelihood as in (3.3.2) has to do with the fact that Σi will at
some point be estimated from a very small sample size, so that the observations in the
sample all lie in an affine subset of the full observation space. In this case, it is possible
for the equiprobability ellipse of Σi to become very small (i. e. collapsing to a plane, line,
or point having a lower dimension than the dimension of the observation space). When
this happens, if there is a new observation x for which x−µi doesn’t lie in the subspace
spanned by the row or column vectors of Σi, then the quantity (x − µi)T Σ−1

i (x − µi)
will become infinite. For example, if a component’s covariance is estimated on the basis
of only two observations, x1 and x2, then the likelihood of this component would be −∞
for all new observations except for those lying on the line collinear with x1 − x2.

The way that such singular covariance matrices are avoided in DGME is to use a
regularized estimate of the covariance when calculating Li(x) in (3.3.2). Instead of
naively using the Σ matrix, which is estimated using the standard sample covariance
formula, we construct a regularized matrix, where we prevent any eigenvalues from
becoming 0. To do so, we first perform an eigendecomposition of Σ:

Σ = Q

⎡⎢⎢⎢⎣
λ1 0

. . .
0 λN

⎤⎥⎥⎥⎦ QT

where Q is a matrix in which the columns are comprised of orthonormal eigenvectors,
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and λk are the corresponding eigenvalues. The regularized matrix, ΣR, is then defined
as

ΣR = Q

⎡⎢⎢⎢⎣
λR,1 0

. . .
0 λR,N

⎤⎥⎥⎥⎦ QT (3.5.1)

where
λR,k = max (λk, λR,min). (3.5.2)

Here, λR,min is a lower-bound on the eigenvalues of ΣR which can be chosen as desired in
order to adjust the amount of regularization. Typically a value should be chosen based
on the expected inter-modal distance,5 dim, of the process being modelled. In particular,
a good rule of thumb is for

√
λR,min to be at least an order of magnitude smaller than

dim.

3.6 Population vs. Sample Covariance

Since DGME builds a pdf based on a sequence of observations, a clear assumption is
that we don’t already have a complete set of observations that constitutes the entire
population of observations. As a result, it is appropriate for us to use the unbiased sample
estimate of covariance when we estimate a component’s Σ parameter. In other words,
when estimating the covariance of component i, we use

Σi = 1
N − 1

N∑
k=1

(xk − µ)(xk − µ)T . (3.6.1)

While use of this estimator makes sense when we want to have an unbiased estimate of
the density, we must consider whether it is appropriate to use as part of the do-merge
decision criterion. In this case, the mean of the Gaussian component is regarded as
the exact center of some neighborhood that defines the threshold of whether a new
observation is allowed to be merged or not. If we use the population covariance, then the
corresponding population standard-deviation will be the average of the distance from the

5The inter-modal distance is is the smallest distance that one expects to exist between the modes of
the estimated density function, based on whatever process is being modelled.
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mean to each point in the set of observations that the component represents. Assuming
we have points arranged equidistant from each other on a circle, then the covariance will
be spherical, where each diagonal entry of Σ is σ2 and σ (i. e. the population standard-
deviation) will be the radius of that circle. If we let rM = 1 in (3.3.1), then this radius
becomes the threshold for determining whether a new observation will get merged or
not. The problem with this is that it assumes the first few observations are a perfect
representation of the population. Because this is a bad assumption, it is important to
initially increase the threshold radius to allow for more data (which may end up farther
than a population standard-deviation away from the sample mean) to be gathered and
a better estimate of the mean to be found. As more data are collected, it makes sense
for this radius to approach the population standard-deviation. This is precisely how
the sample covariance estimator behaves: initially it “inflates” the variance to account
for uncertainty in the data, and as more data is collected (i. e. more observations are
encountered), this uncertainty decreases, and the sample standard-deviation becomes
closer to the population standard-deviation.

The conclusion we can draw from this is that it is appropriate to use the sample covariance
estimator both for estimating the parameters of a Gaussian component and for computing
the Mahalanobis distance used as part of the the do-merge decision . Although the
difference between the sample and population estimates becomes negligible as Ni (the
number of observations used to estimate the parameters of component i) increases, the
Ni value for every newly-created mixture component will be small initially. It is therefore
important to use the sample covariance estimator for the do-merge decision in order to
maintain unbiased mixture component parameter estimates when Ni is small.

3.7 Updating the Model with an Observation

In Algorithm 1, if the do-merge decision is decided yes, then the new observation must
be merged into an existing component of the model. We must therefore determine the
best way to merge an observation into a model. A measure of optimality used in DGME
pertaining to observation merging is the following: assuming that an observation xnew was
merged into a GMM component Ga, then the likelihood of all observations represented
by Ga should be maximized given Ga as the local model for these observations. In other
words, if xnew is to be merged into Ga, and Snew is the set of observations that Ga
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represents after the merge, then the updated parameters of Ga are given as:

(µnew, Σnew) = argmax
(µ,Σ)

∑
x∈Snew

g(x; µ, Σ) (3.7.1)

where g is a normally distributed pdf with parameters µ and Σ, and

Snew = Sold ∪ {xnew}. (3.7.2)

This is the maximum likelihood criterion, and the corresponding mean and covariance
update equations are derived in Sections 3.7.1 and 3.7.2.

3.7.1 Merging Two Gaussian Components into One

Since merging a single observation into an existing Gaussian can be seen as a specialized
case of merging two Gaussians together, we will first derive the equations relevant to
merging two Gaussian components together, and subsequently consider the case where
we are merging only a single observation.

Assume that we begin with two one-dimensional Gaussian components, g1 and g2 which
were estimated, respectively, from the sets of points {a1, · · · , aN} and {b1, · · · , bM} using
an unbiased estimator. In other words, these components are distributed as follows:

g1 ∼ N

⎛⎜⎜⎜⎜⎜⎝
1
N

N∑
i=1

ai  
µ1

,
1

N − 1

N∑
i=1

(µ1 − ai)2

  
σ2

1

⎞⎟⎟⎟⎟⎟⎠ (3.7.3)

g2 ∼ N

⎛⎜⎜⎜⎜⎜⎝
1

M

M∑
i=1

bi  
µ2

,
1

M − 1

M∑
i=1

(µ2 − bi)2

  
σ2

2

⎞⎟⎟⎟⎟⎟⎠ (3.7.4)
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If we were to have estimated a single component g3 from the set of points {a1, · · · , aN , b1, · · · , bM},
such a component would be distributed as follows:

g3 = g1 ⋎ g2 ∼ N

⎛⎜⎜⎜⎜⎜⎝
1

N + M
(

N∑
i=1

ai +
M∑

i=1
bi)  

µ3

,
1

N + M − 1(
N∑

i=1
(µ3 − ai)2 +

M∑
i=1

(µ3 − bi)2)  
σ2

3

⎞⎟⎟⎟⎟⎟⎠
(3.7.5)

Here, the ⋎ operator signifies the merging of two components into a single component.

Our objective is to write the mean and variance parameters of (3.7.5) in terms of N ,
M , and the parameters in (3.7.3) and (3.7.4). By inspection, and with a bit of algebraic
manipulation, the merged mean parameter can be written as:

Two-Gaussian Merge Mean Equation

µ3 = 1
N + M

(Nµ1 + Mµ2) (3.7.6)

To determine the variance parameter, we will first consider how to write the expression
(µ3 − ai)2 in terms of other parameters. First, we will rewrite this expression as:

(µ3 − ai)2 = (µ1 − ai + ∆13
µ3−µ1

)2 = (µ1 − ai)2 + ∆2
13 + 2∆13(µ1 − ai). (3.7.7)

Now we can write:

N∑
i=1

(µ3 − ai)2 =
N∑

i=1
(µ1 − ai)2 +

N∑
i=1

∆2
13 + 2∆13(

N∑
i=1

µ1 −
N∑

i=1
ai) (3.7.8)

= (N − 1)σ2
1 + N∆2

13 + 2∆13��������⁓0
(Nµ1 −Nµ1) (3.7.9)

= (N − 1)σ2
1 + N(µ3 − µ1)2 (3.7.10)

Finally, this result (and the analogous result for ∑M
i=1(µ3 − bi)2 ) can be substituted
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into

σ2
3 = 1

N + M − 1(
N∑

i=1
(µ3 − ai)2 +

M∑
i=1

(µ3 − bi)2), (3.7.11)

giving us the final result we are after:

Two-Gaussian Merge Covariance Equation (1-D)

σ2
3 = 1

N + M − 1
{
(N − 1)σ2

1 + N(µ3 − µ1)2 + (M − 1)σ2
2 + M(µ3 − µ2)2

}
(3.7.12)

The above results were derived for the case of merging two 1D Gaussian components.
These results can be easily extended to the case of merging two N -dimensional Gaussian
components. The result in (3.7.6) does not change at all in this case – the only difference is
that the means will be N -dimensional vectors instead of scalars. The result in (3.7.12), on
the other hand, will have a similar form, but will change slightly for the multidimensional
case – squared scalars will be replaced with an outer-product, and the variances are
replaced with covariance matrices. The resulting equation for the multidimensional case
is:

Two-Gaussian Merge Covariance Equation (multidimensional)

Σ3 = 1
N + M − 1

{
(N − 1)Σ1 + N(µ3 − µ1)(µ3 − µ1)T

+ (M − 1)Σ2 + M(µ3 − µ2)(µ3 − µ2)T

}
(3.7.13)

3.7.2 Merging a single point into a component

In the case where we have one existing Gaussian component, and would like to merge one
point into this Gaussian, we can derive the parameter-update equations based on (3.7.6)

43



3.8. SUMMARY OF DGME ALGORITHM

and (3.7.12). The key is to treat the single point as a Gaussian component estimated on
the basis of this one point. In other words, if we represent the point as x, then

µ2 = x (3.7.14)

and
M = 1. (3.7.15)

If we substitute (3.7.14) and (3.7.15) into (3.7.6) and (3.7.12), after some algebraic
manipulation6, we end up with the following equations for the new component that
results from the merge:

Point to Gaussian Merge Equations

µ3 = 1
N + 1(Nµ1 + x) (3.7.16)

and
σ2

3 = (µ1 − x)2

N + 1 + N − 1
N

σ2
1. (3.7.17)

or, for the multidimensional case,

Σ3 = (µ1 − x)(µ1 − x)T

N + 1 + N − 1
N

Σ1. (3.7.18)

One important observation is that when M = 1, σ2
2 (or Σ2 in the multidimensional case)

does not show up in these equations. This means that for the Gaussian component we
use to represent the single point, it doesn’t matter what we choose for the covariance.

3.8 Summary of DGME Algorithm

Bringing together the previously discussed issues and concepts, let us now summarize the
designs of the DGME algorithm and the proposed likelihood function. The “big-picture”
version of the DGME algorithm was presented in Section 3.2 and Algorithm 1. The

6See Appendix A for the derivation of the point-to-gaussian merge equations.
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Algorithm 2: Pseudocode for ADD_NEW_COMPONENT
input : mean vector µ

initial covariance matrix Σ0
Result: a new mixture-component is added to model with mean µ, covariance Σ0, and

weight 1.

Algorithm 3: Pseudocode for MERGE_OBS
input : index n indicating which component is to be updated

observation vector x
Result: the parameters of component n are updated to incorporate x.
Function MERGE_OBS(n, x)

µ ← mean of mixture component n;
Σ ← covariance matrix of mixture component n;
N ← the number of observations used to estimate µ and Σ;
Nnew ← N + 1;
µnew ← (Nµ + x)/(Nnew) ;
Σnew ← (µ− x)(µ− x)T /(Nnew) + (N − 1)Σ/N ;
replace mixture component n parameters with µnew, Σnew, and Nnew;

end

Algorithm 4: Pseudocode for GET_MAX_PENALIZED_LIKELIHOOD
input : a single observation vector x
output : i – the index of the component providing the maximum likelihood

Lmax – the maximum likelihood value found
Function GET_MAX_PENALIZED_LIKELIHOOD(x)

likelihoods ← [GET_PENALIZED_LIKELIHOOD(n, x) | n ∈ [1, · · · , number of
components ]];

Lmax ← max(likelihoods);
i ← index of likelihoods where Lmax appears

end

ADD_NEW_COMPONENT subroutine (Algorithm 2) simply adds a new mixture component to
the model having a weight 1, and the µ and Σ parameters specified as inputs. Because
the value for Lth is always compared with the individual Li(x) values for each component
when evaluating the do-merge decision , it is possible to divide both (3.3.1) and (3.3.2) by
rM . This allows us to define the GET_LIKELIHOOD_THRESHOLD function so that it always
returns −1. It could, however, be defined so that it depends on the current state of the
model.

The MERGE_OBS subroutine (Algorithm 3) takes an observation x as an input, as well
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Algorithm 5: Pseudocode for GET_PENALIZED_LIKELIHOOD
input : n – an index specifying a particular component within model

x – a single observation vector
Data:
αq, Nq, Ninflection – parameters that influence the computation of α
ϵ – fractional amount by which covariance should be inflated
rM – Mahalanobis radius
output : L – the likelihood of x given component n of model
Function GET_PENALIZED_LIKELIHOOD(n, x)

µ ← mean of mixture component n;
Σ ← covariance matrix of mixture component n;
Nobs ← the number of observations used to estimate µ and Σ;
Σreg ← REGULARIZE(Σ); // regularizing Σ is optional
if Nobs is 1 then

ΣW ← σ2
maxI;

else
α ← GET_ALPHA(Nobs, Ninflection, Nq, αq);
ΣW ← α(1 + ϵ)Σreg + (1− α)σ2

maxI;
end
return −MAHALANOBIS_DIST(x, µ, ΣW ) / rM

end

Algorithm 6: Pseudocode for GET_ALPHA
input : Nobs – the number of observations currently represented by a particular

mixture component
Nq, αq – An α value of αq will be computed when Nobs is Nq

Ninflection – the inflection of the sigmoid curve will occur when Nobs is
Ninflection.
Result: Computed value for α
Function GET_ALPHA(Nobs, Ninflection, Nq, αq)

z ← [ln αq − ln (1− αq)] / [Nq −Ninflection] ;
α← 1/ [1 + exp{−z(Nobs −Ninflection)}] ;

end

as the index i of a particular component gi of the model, and x is used to update the
parameters of gi according to equations in (3.7.16) and (3.7.18). The last subroutine
referred to in Algorithm 1 is GET_MAX_PENALIZED_LIKELIHOOD, whose pseudocode is
shown in Algorithm 4. This subroutine calls GET_PENALIZED_LIKELIHOOD for each
component in the model, and then determines which of these components results in the
largest likelihood value, and what the largest likelihood value is. The real work of this
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Figure 3.5: Schematic diagram depiction of how the
GET_PENALIZED_LIKELIHOOD function computes the
working covariance. The ⨂ symbols represent a multiplication
operation.

subroutine is performed inside the GET_PENALIZED_LIKELIHOOD function, which will now
be explained in detail.

3.8.1 The GET_PENALIZED_LIKELIHOOD Function

The GET_PENALIZED_LIKELIHOOD function is responsible for computing a value Li for
the ith mixture component, which is compared to the threshold Lth in order to determine
whether an observation should get merged into an existing mixture component. Further-
more, Li will be computed for every i in the model (i. e. i ∈ [1..num_components]). If an
observation will be merged at all, it will be merged to component j, where j = argmaxi Li.
Therefore, GET_PENALIZED_LIKELIHOOD must be defined in such a way that the largest
Li value is associated with the component into which it would be best to merge the
observation.

Algorithm 5 details the procedure for computing the likelihood, and Figure 3.5 shows
an alternative way of visualizing how this procedure operates. The overall goal is to
compute a Mahalanobis distance from an observation to a mean, given a particular
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covariance matrix. The covariance used for this distance computation is called the
working covariance, and is given the symbol ΣW . The working covariance is not the same
as the actual sample covariance, Σsamp, of the mixture component. Rather, the working
covariance is computed based on several model hyperparameters, as well as Σsamp, and
the number of observations, Nobs, that have already been incorporated into the mixture
component we’re considering.

If the component for which Li is being computed has only a single observation that
has contributed to its parameters, then Σsamp will not reflect anything other than a
prior assumption about how the data is spread. Because of this, the working covariance
computation completely ignores Σsamp in this case, and will set ΣW to be the spherical
covariance Σmax = σ2

maxI. If, on the other hand, there are at least two observations that
have contributed to the mixture component’s parameters, then the working covariance is
computed as a convex sum of the two covariances (1 + ϵ)Σreg and Σmax. The first of
these covariances is an “inflated” version of Σreg, where the amount of inflation depends
on the value of ϵ, which can be chosen freely. A further parameter, α, is a value between
0 and 1. It defines the fraction of (1 + ϵ)Σreg that will be used to compute ΣW . When
α = 1, the working covariance is identical to (1 + ϵ)Σreg, and when α = 0, then the
working covariance is identical to Σmax. If α = 0.5, then ΣW is essentially the “average”
of the two covariances.

The parameter α is not chosen arbitrarily, but rather is computed based on the current
value of Nobs for a component (i. e. its unnormalized weight). The computation makes use
of a sigmoid function, as shown in Figure 3.6. The inflection point of this sigmoid function
(i. e. where the output is 0.5) is set to occur at the point where Nobs = Ninflection. Also,
when Nobs = Nq, the function will output the value αq. The parameters Ninflection, Nq, and
αq ∈ [0, 1] can be freely chosen in order to fully specify the sigmoid function. In summary,
the covariance mixing factor α is computed as (α = SIGMOID(Nobs; Ninflection, Nq, αq)).
The specific details of how this function is implemented can be found in Algorithm 6.

The reason this function was chosen in order to compute α is because initially, right
after a component has been created, it doesn’t have a sufficient number of observations
that have contributed to its parameters in order to allow one to “trust” the accuracy of
the parameters. In this case, instead of allowing a very narrow covariance estimate to
influence the likelihood computation, we would prefer to use a broad prior covariance that
reflects the uncertainty of our estimate. As more and more observations are incorporated
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Figure 3.6: This function is an example within the sigmoid family of curves which
can be used to compute values of α. In this particular example,
Ninflection = 50, Nq = 65, and αq = 0.9.

into the component’s parameters, we can rely on its parameters more, and slowly shift
the covariance we use for the likelihood computation from a broad (i. e. spherical) prior
to something with a more defined / refined shape.

3.9 Experimental Results

3.9.1 Estimating a Known Density Function

In order to examine the effectiveness of DGME in estimating densities of points, an
experiment was conducted in which 200 points were randomly sampled from a known
mixture distribution with two equally-weighted components: g1 ∼ N ([ 0

0 ] , [ 2.5 1.5
1.5 2.5 ]) and

g2 ∼ N ([ 7
0 ] ,

[
2.5 −1.5

−1.5 2.5

]
). From each component, 100 points were sampled, and these
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Figure 3.7: Result of applying DGME to observations sampled from a known dis-
tribution. The two purple ellipses represent the mixture components
from which the data points were drawn. The orange-shaded ellipses
represent the components in the model learned by DGME, and are
colored according to their normalized weights. The unnormalized
component weights, from left-to-right are 17, 81, 6 and 96.

points were randomly shuffled together. An example of the results one obtains when
running DGME7 on this data is shown in Figure 3.7. The figure shows all of the sampled
data-points with green lines connecting temporally neighboring points. The light-blue
ellipses represent g1 and g2, and the other ellipses represent the components of the
GMM which resulted from providing DGME with the data. The shade of orange used
for these components represents the normalized weight of each component. In this
figure, as one would expect, the two darkly shaded ellipses have the highest weights,
and are correspond well with the components of the source distribution. The other
lesser-weighted components represent points that can be considered outliers with respect
to the source distribution, and these components have a correspondingly lesser influence

7The DGME parameters used here were σ2
max = 2.62, αq = 0.9, Ninfl = 50, Nq = 100, rM = 4,

ϵ = 0.1, and σ2
min = 0.001.
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in the estimated GMM.

3.9.2 DGME Comparison with Expectation-Maximization

In order to test the quality of the DGME method, it was compared with an Expectation-
Maximization (EM) based approach in its ability to model the “Old Faithful” benchmark
dataset. The EM algorithm was used to estimate the parameters of a 2-Gaussian GMM
in an offline manner (i. e. using all observations at each iteration). Just as it was necessary
to select in advance the number of Gaussians for the EM approach, DGME parameters
were chosen which resulted in density estimates of this dataset that most often contain
two Gaussians.

The resulting density estimates are shown in Figure 3.8. The upper-left and lower-right
plots show the resulting density estimate from the EM and online DGME methods,
respectively. Though barely perceptible from these plots, the difference between the
plots is shown in the heat map in the background. These results demonstrate that the
DGME method can produce density estimates comparable to the EM method. It should
be noted that because the results of the DGME online method depend on the stochastic
nature of the data, the estimates it produces can vary depending on the order the data is
encountered. To get a better idea of the method’s general performance, it was run until
100 density estimates containing 2 Gaussians had been produced. The Mean Integrated
Square Error (MISE) between each of these 100 density estimates and the EM generated
density estimate were calculated, resulting in an average MISE of 0.0358 with a standard
deviation of 0.0317. It is clear from these results that the density estimates generated by
these two methods are very similar, though the computational and storage requirements
are quite different, since the DGME method requires only a single-pass and does not
need to store the observations.
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Figure 3.8: Comparison of density estimate pEM derived using the EM algorithm
(upper left), and the density estimate pDGME derived using the
DGME method (lower right), on the Old Faithful dataset. The heat
map in the background shows the difference between pDGME and
pEM .
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Chapter 4

Prediction and Classification

Prediction and classification are two important tasks encountered within the field of
machine learning. The two tasks are related in that they both start with a set of training
examples (each typically in the form of an input vector and a target vector). From this
set, a model is estimated that can be used to predict either a target value or a target
class given a particular input vector. An example of a regression task would be: given the
age of a person in a particular field, how much money does the person earn on average.
A classification task might be: given 10 medical diagnostic measurements taken on a
patient, decide whether the patient has disease A, disease B, or is healthy. It is possible
to perform either kind of task (prediction or classification) using one of the most common
statistical tools for process modelling, regression.

A regression model is typically defined in the form of a function which maps from a
particular input vector to a target vector that is expected given the input vector. This
provides exactly the information needed for the prediction task – in this case, a regression
function would map from a vector of given values to a vector of predicted values. For
classification problems, on the other hand, the application is not as direct – a classification
problem needs to choose one of k classes given a vector of given values. In this case, it is
possible to code the target vector using what is known as a one-hot encoding, such that
the problem can be treated as a regression problem. For the above example in which
the classes are patient has disease A, patient has disease B, and patient is healthy, we
could one-hot encode these different target classes as the vectors

[
1 0 0

]
,

[
0 1 0

]
,

and
[
0 0 1

]
, respectively. Then in order to choose a particular class, each element of

the predicted vector’s value is compared, and the class is chosen whose corresponding
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element-location has the highest value. For example, if a predicted target vector was[
0.4 0.3 0.8

]
, we could say that the class represented is patient is healthy. The clarity /

certainty of this choice depends on the relative difference between the values of the target
vector elements. If, for example, the two highest values are very near to each other, it
might be decided that it’s not clear which of the corresponding classes should be chosen.
In this sense, the normalized predicted target vector can be viewed as containing the
probability values for each class.

This chapter explains how regression can be performed with joint probability densities
(and more specifically, Gaussian Mixture Models) in order to make predictions about
certain components1 of an observation vector given specific values for other components.
As mentioned above, regression can also be used for classification tasks. Examples
showing the performance of DGME and regression for prediction and classification tasks
will also be presented in this chapter.

4.1 Regression with Joint Probability Distributions

Regression methods are used in a wide variety of scenarios, including methods ranging
from basic linear regression to more flexible variants such as Gaussian Process Regression
(GPR). The common goal behind each of these methods is to learn an accurate and
general mapping from some random input vector X to a random output vector Y. To
learn this mapping, X ↦→ Y, a regression method would operate on a set of training
examples (xi, yi), resulting with a regression function y = m(x). If one wants, however,
to invert this function (assuming an inverse exists over some desired range of y values),
and obtain the function x = m−1(y), the regression method must typically be re-applied
to a set of training examples in which xi and yi are swapped.

This illustrates one of the weaknesses of a regression-only approach to learning associations
between variables: the learned relationship is unidirectional. A powerful technique
for overcoming this limitation involves combining probability density estimation and
regression.

Formally, a regression function is defined in probabilistic terms as the expected value of

1“Component” used here refers to an element in a vector, not a mixture component.
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some random vector, given a specific value of a different random vector:

y = m(x) = E[Y | X = x]. (4.1.1)

If the representation of the joint probability density by which these random vectors are
distributed is appropriately chosen, the calculation of this conditional expectation is
relatively inexpensive, and can be a viable alternative to standard regression methods
that directly estimate a regression function from training examples.

As a simple example, if we have two random variables, U and V, which we wish to know
the relationship between, we can estimate the joint probability density fU,V(u, v) by any
number of density estimation techniques. In so doing, the relationship between these
variables has been captured, and one can calculate either of the two possible regression
functions

u = m(v) = E[U | V = v] =
∫

u′ fU|V(u′ | v) du′ or (4.1.2)

v = m−1(u) = E[V | U = u] =
∫

v′ fV|U(v′ | u) dv′ (4.1.3)

where the relationship between a conditional density function (such as the ones which
appear inside the integrals) and a joint density function is given by Bayes’ rule as

fY|X(y | x)  
conditional pdf

=

joint pdf  
fY,X(y, x)∫
fY,X(y, x) dy  
marginal pdf

. (4.1.4)

Equations (4.1.2) and (4.1.3) are equally valid when U and V are random vectors.
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4.2 Regression Using GMMs

In order to calculate a regression function from a GMM estimated by DGME, a method
is used that was introduced as a least-squares function approximator in (Ghahramani and
Jordan, 1994), and later presented in more detail as Gaussian Mixture Regression (GMR)
in (Sung, 2004). It is a direct application of (4.1.1) to GMMs, taking advantage of the
elegant mathematical properties of the Gaussian function. By using Gaussian functions
as mixture components, the calculation of marginal and conditional probabilities required
for the regression function becomes trivial, requiring little computational effort.

To properly understand how to use a GMM for regression, we will start by examining
how a single Gaussian pdf can be used for regression.

4.2.1 Regression from a Single Multivariate Gaussian

It is possible view (4.1.4) as a partitioning of a multivariate Gaussian fX,Y where

fX,Y = fY |X fX . (4.2.1)

One property of this partitioning is that the resulting components fY |X and fX are also
both multivariate Gaussians. In the work done in (Mardia, Kent, and Bibby, 1979), the
analytic solution for the conditional distribution of Gaussian distributed multivariate
random-variables is derived. The result is presented here:

Assume we have a Gaussian distributed random vector V =
[
X1 ∥ X2

]
composed of

two ’subvectors’ X1 ∈ Rp and X2 ∈ Rq. If the variance of X1 is Σ11, and the variance
of X2 is Σ22, then the variance of V can be written in the form of block submatrices
as Σ =

[
Σ11 Σ12
Σ21 Σ22

]
, where Σ12 = ΣT

21 is the covariance between X1 and X2. Using these
submatrices, and the means of X1 and X2, the conditional distribution of X2 given X1

can be written as

fX2|X1(X2 | X1 = x1) ∼ N (µ2 + Σ21Σ−1
11 (x1 − µ1)  

E[X2|X1=x1]

, ΣX2|X1) (4.2.2)
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where

ΣX2|X1 = Σ22 − Σ21Σ−1
11 Σ12. (4.2.3)

The matrix ΣX2|X1 is the Schur complement of Σ11. In order to construct ΣX2|X1 , Σ11

must be inverted once, its unwanted rows (which correspond to the variables we’re
conditioning upon) must be removed, and then the resulting matrix must be inverted a
second time. The matrix Σ21Σ−1

11 (part of the E[X2 | X1 = x1] expression) is known as
the regression coefficient matrix, because it contains the coefficients which define the line
onto which an input vector must be projected to get a corresponding expected output
vector. Equation (4.2.2) indicates that if you want to condition X2 on a particular value
of X1, the conditional mean is obtained by modifying X2’s mean by adding the product
of Σ21 with a normalized version of how far X1 is from its mean.

Figure 4.1: Illustration of using a 2D Gaussian pdf for regression: The joint pdf
is projected onto the x-y plane in the form of an ellipse. Regression
lines are shown for two cases: E[Y |X = x0] and E[X|Y = y0].
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Based on the results given by (4.2.2) and (4.2.3), we can separate the joint density of a
single multivariate Gaussian function according to (4.2.1):

Bayesian Decomposition of a Multivariate Normal Distribution

fX,Y = fY |X fX

where

fX,Y ∼ N

⎛⎝[
µX ∥ µY

]
,

⎡⎣ ΣXX ΣXY

ΣY X ΣY Y

⎤⎦⎞⎠ , (4.2.4)

fY |X ∼ N (µY + ΣY XΣ−1
XX(X − µX), ΣY Y − ΣY XΣ−1

XXΣXY ), (4.2.5)

and

fX ∼ N (µX , ΣXX). (4.2.6)

The result in (4.2.5) allows us to write a regression equation

E[Y | X = x] = µY + ΣY XΣ−1
XX(x− µX), (4.2.7)

as long as we know the parameters of the joint pdf fX,Y . This equation is depicted for
the 2D case in Figure 4.1.

4.2.2 Generalizing to Arbitrary Components

The regression equation (4.2.7) applies to an observation vector composed of two con-
catenated subvectors (one regarded as the regressor and one as the regressand). This
result is easily extended to the case where any arbitrarily-ordered subset of a vector’s
components can be used as the regressor random vector, and likewise any other ordered
subset can be used as the regressand random vector.

For example, if each observation has the form z1 =
[
A B C D F

]
where A . . . F

are real scalar random variables, let us assume that Z1 ∼ N (µ1, Σ1) where

µ1 =
[
µA µB µC µD µF

]
,
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and

Σ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
A σAσB σAσC σAσD σAσF

σBσA σ2
B σBσC σBσD σBσF

σCσA σCσB σ2
C σCσD σCσF

σDσA σDσB σDσC σ2
D σDσF

σF σA σF σB σF σC σF σD σ2
F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If we wish to compute E[B, D | A = a, C = c], it is sufficient to marginalize F out of the
pdf, and to re-order the component locations in µ1 and Σ1. Since marginalization of a
multivariate Gaussian distribution simply requires removing the elements from µ1 and
Σ1 that are related to the variables that are being marginalized out, we would start out
with the marginal distribution Z2 ∼ N (µ2, Σ2) where

µ2 =
[
µA µB µC µD

]
,

and

Σ2 =

⎡⎢⎢⎢⎢⎢⎢⎣
σ2

A σAσB σAσC σAσD

σBσA σ2
B σBσC σBσD

σCσA σCσB σ2
C σCσD

σDσA σDσB σDσC σ2
D

⎤⎥⎥⎥⎥⎥⎥⎦ .

Next, we would reorder the elements of Z2 to get Z3 ∼ N (µ3, Σ3) where

µ3 =
[
µB µD  

µX

µA µC  
µY

]
, (4.2.8)

and

Σ3 =

σ2
B σBσD σBσA σBσC

σDσB σ2
D σDσA σDσC

σAσB σAσD σ2
A σAσC

σCσB σCσD σCσA σ2
C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΣXX

ΣY X

. (4.2.9)

Finally, we can directly substitute the values identified in (4.2.8) and (4.2.9) into the
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regression equation (4.2.7).

4.2.3 Gaussian Mixture Regression (GMR)

Besides being able to perform regression with a single Gaussian pdf, it is also possible
to find a closed-form regression function expression for a pdf represented by a mixture
model. Starting with the regression equation (4.1.1) which defines regression in terms of
conditional expectation, the mixture-model specific regression formula can be derived as
follows:

m(x) = E[Y | X = x]

=
∫

y pY |X(Y = y | X = x) dy

=
∫

y
pY X(Y = y, X = x)

pX(X = x) dy

= 1
pX(X = x)

∫
y pY X(Y = y, X = x) dy

= 1
pX(X = x)

∫
y

∑
i

wi pY X,i(Y = y, X = x) dy

=
∑

i

1
pX(X = x)

∫
y wi pY |X,i(Y = y | X = x) pX,i(X = x) dy

=
∑

i

wi pX,i(X = x)
pX(X = x)

∫
y pY |X,i(Y = y | X = x) dy

=
∑

i

wi pX,i(X = x)
pX(X = x) Ei[Y | X = x]

=
∑

i

wi pX,i(X = x)∑
j wj pX,j(X = x)Ei[Y | X = x].

(4.2.10)

One can treat the fractional multiplicand in the last line of (4.2.10) as a weight, in
which wi pX,i(X = x) represents the amount contributed to the total probability density
pX(X = x) (evaluated at the specific value x). We can then write (4.2.10) as

m(x) =
∑

i

ki(x) Ei[Y | X = x], (4.2.11)
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with the per-mixture-component weights at x defined as

ki(x) = wi pX,i(X = x)∑
j wj pX,j(X = x) . (4.2.12)

Equation (4.2.11) is completely general, and applies to any kind of mixture model. In the
case of Gaussian mixture models, the conditional distribution defined in (4.2.2) can be
used for determining a single Gaussian component’s conditional expectation in (4.2.11).

4.2.4 The Problem with Spherical Covariance

When a GMM contains “brand new” Gaussians created via the DGME algorithm, the
covariance matrices of these Gaussians represent a spherical distribution, and can have
a negative impact on the accuracy of values predicted with the model. To understand
why this is, it is instructive to consider how regression is performed in the case of an
individual multivariate Gaussian pdf. The slope of the regression function from (4.2.2)
is ΣYXΣ−1

XX, where ΣYX and ΣYX are block-matrices in (4.2.4). In the spherical case2,
ΣYX = 0, and the “slope” is such that the predicted value of Y has no dependence on a
particular value of X. This makes sense and is reasonable if the covariates of the data
at µ are statistically independent. The problem, however, is that with “real” data, it
is almost guaranteed that there will be some minuscule correlation between some of
the covariates. This means that while a spherical covariance is a good choice in terms
of representing a lack of prior knowledge, it is a poor choice to use this covariance as
part of predictive / inferential operations (such as regression), because it can introduce
potentially large errors.

As the number of observations used to estimate a Gaussian’s Σ increases, the “shape” of
Σ will become more and more aligned with the “shape” of the underlying distribution
of local data around the Gaussian’s mean. Such a covariance matrix will have much
more “predictive power” than a spherical covariance. To explore the effect that the
number of observations has on the “predictive power” of a Gaussian, an experiment
was conducted in which N observations are sampled from a distribution with a known
“optimal” principal component, p∗ . An eigendecomposition is performed on the resulting

2Covariance is spherical when the covariates are statistically independent.
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Figure 4.2: Acute Angular Error: for two vectors (e. g. p̃ and p∗ ), the acute
angular error is defined as the acute angle between the lines through
which the vectors pass. Here the error is labeled ϵθ . This definition
applies also in higher-dimensions, where the dot-product can be used
to determine the angle between two vectors.

covariance estimate, and the acute angular error between the first principal component,
p̃ , is measured. The acute angular error ϵθ is defined as the absolute value of the acute
angle between a line collinear with p̃ , and another line collinear with p∗ – see Figure 4.2
for a geometric interpretation of this error.

For this experiment, estimates of Σ were made 1000 times, each time with the same
sample size, N . For each Σ estimate, ϵθ was determined, and mean and standard-deviation
statistics were computed for the ensemble of ϵθ values3.

The ϵθ statistics for 2D data having values of N between 2 and 20 are shown in ??. This
figure shows that both the mean and standard deviation of ϵθ decrease rapidly with
increasing N . The smaller ϵθ is, the “more correct” the covariance estimate is, and the
more suitable it is for use in predictive models. If, for example, one wanted the 1-σ
upper bound on the angular error to be 2◦, then it would be necessary to exclude any
Gaussians having an unnormalized weight (i. e. number of observations) w < 4.

Gaussians with w = 1 have spherical covariance matrices and an average ϵθ of 45◦, which
is completely unusable for good predictive results. It is therefore essential to exclude
Gaussians with w = 1 when predicting values, and often makes sense to exclude all
Gaussians with w < k, for some k > 1.

3The ϵθ values are normally distributed.
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Figure 4.3: Effect of dimension on 1-σ upper bound of ϵθ : for a given number
of points, the upper bound flattens with increasing dimension. The
most important factor influencing the asymptotic upper bound is
not the dimension of points (d), but rather the number of points
(N). N ’s effect on ϵθ appears to have minimal dependence on the
value of d.

The preceding analyses have so far only focused on 2D data. What happens when higher
dimensional data is modeled? Figure 4.3 shows the 1-σ upper bound of ϵθ for different
dimensions (d) and numbers of observations (N). As the dimension increases, the upper
bound on ϵθ increases, but asymptotically approaches a limit. The value of this limit
decreases dramatically after the first few points have been observed, leading one to a
decent rule of thumb: a Gaussian should have an unnormalized weight of at least w = 4
in order to get a “good” upper bound on ϵθ .

Putting these findings into practice, we will compare the prediction errors of models
under a variety of circumstances. Some models were trained using points sampled from
the linear function y = x, and others were trained using sampled data from the quadratic
function y = 0.1x2. Models were trained from this data using DGME with different σ0

values and different σmax values. Predictions of y-values were made at the same values
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used for the training data, and only those Gaussians having a weight w > k were used
for prediction, where k ∈ {1, 2, 3}. The results of these experiments are summarized in
Table 4.1.

Table 4.1: Minimum Gaussian weight threshold (k) effect on mean-squared error
(MSE) for linear and quadratic data. In both linear and quadratic
cases, the MSE is reduced dramatically by omitting w = 1 Gaussians,
but MSE can become worse for larger k if the distribution of weights
is heavier for weights below k. The w = n columns indicate the
quantity of Gaussians having a weight = n in the trained model.

Dataset Type σ0 σmax w = 1 w = 2 w = 3 w > 3 k MSE σMSE

linear 0.8 1.0 3 6 10 11 1 0.0174 0.0107
linear 0.8 1.0 3 6 10 11 2 6.312 x 10-16 7.147 x 10-16

linear 0.8 1.0 3 6 10 11 3 6.602 x 10-16 7.510 x 10-16

quadratic 0.6 1.2 2 36 1 5 1 0.0144 0.0139
quadratic 0.6 1.2 2 36 1 5 2 0.0026 0.0026
quadratic 0.6 1.2 2 36 1 5 3 0.1011 0.1565

4.3 Experimental Results

The DGME/GMR approach was tested in the areas of classification and prediction, using
a standard benchmark in each of these areas. The two-spiral benchmark problem is a
challenging classification task which requires a classifier to separate two classes of points
that are not linearly separable. Mackey-Glass time-series prediction benchmark problem
defines a chaotic time-series whose future values should be predicted based on past values,
given some initial training data from the time-series.

4.3.1 Two-Spirals Benchmark

The Two-Spirals benchmark (initially presented in (Lang and Witbrock, 1988), and later
in (Fahlman and Lebiere, 1990)) was chosen to investigate the performance of using
DGME/GMR on classification problems. The dataset is by default4 comprised of a series

4The Two Spirals dataset is parameterized by the density and maxRadius parameters, whose default
values are 1 and 6.5, respectively.
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of
[
x y C(x, y)

]
observations, where the class function C(x, y) ∈ [0, 1], and is defined

as:

C(x, y) =

⎧⎪⎨⎪⎩0 when x = −ri sin(θi) and y = −ri cos(θi)

1 when x = ri sin(θi) and y = ri cos(θi)

where
θi = iπ

16 ,

ri = (6.5)104− i

104 ,

and
i ∈ [0, 1, 2, · · · , 96].

Figure 4.4: Density estimation results on Two-Spiral benchmark. Each ellipse
represents an equiprobability contour of a Gaussian component of
the joint probability density fX,Y (x, y) (the class random-variable
has been marginalized out).

In this experiment, DGME was used to approximate a joint probability density function
of the (x, y) coordinates and the class C. A regression function E[C|X = x, Y = y] was
extracted from the joint probability density, where C is a continuous valued random
number. The output of the regression function is thresholded to determine the class of a
point at the coordinates (x, y). Figure 4.4 shows the Gaussians of the joint probability
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density fX,Y (x, y) after the merging procedure was applied and the class variable is
marginalized out. The ellipses represent equiprobability contours of the Gaussians used
to form the joint probability density fX,Y (x, y). Note that each Gaussian has its own
weight and the weighted sum of the Gaussians represents the joint probability density
given by

fX,Y (x, y) =
M∑

i=0
ŵiϕi, (4.3.1)

where M is the number of Gaussians in the mixture, ŵi is a mixing coefficient and ϕi

is a Gaussian N (µi, Σi). This test of the DGME/GMR method on this classification
problem suggests its suitability for classification tasks.

4.3.2 Breast Cancer Data Classification Results

The Wisconsin Diagnostic Breast Cancer dataset (Lichman, 2013) was published in 1991,
and has been used as a benchmark dataset in the area of classification. It consists of
569 observations derived from clinical cell-tissue samples taken from tumors of different
patients. Each observation includes several features related to the cell sample, as well as
a diagnosis of malignant or benign.

In the context of classification, the task is to predict whether a tissue sample is malignant
or benign based on the different features that characterize the sample. To apply a mixture
model for the purpose of classification, one can build a model from observations of the
form

[
D F1 F2 · · · FN

]
, where D represents whether the diagnosis was malignant,

and takes on the values 0 (non-malignant) or a 1 (malignant). The values Fi in the
observation represent the other features measured on each tissue sample. Examples of
these features are the mean, standard-error, and worst-case values for cell radius, texture,
perimeter, area, smoothness, etc. After a model has been built using observations
like this, it is possible to use the model to predict the conditional expected value
D̂ = E [D | F1, F2, · · · , FN ]. If it turns out that D̂ > 0.5, then we can say that the
prediction leans in favor of a malignant diagnosis, and when D̂ < 0.5, then the diagnosis
is predicted to be benign. The closer D̂ is to 0 or 1, the more confident this prediction
is.
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Figure 4.5: Classification accuracy when applying DGME to the Wisconsin Di-
agnostic Breast Cancer dataset. The hyperparameter σ2

max is swept
from 2 to 16, with a fixed value of σ2

0 = 0.01. The 1-σ confidence
interval is plotted surrounding the average classification rates.

In (Wolberg et al., 1995), a classification task was performed on this dataset using
both logistic regression, and a method called “Multisurface Method-Tree” (MSM-T)
(Bennett, 1992), which constructs a decision-tree by using linear programming. With
varying numbers of 10-fold cross-validation runs, logistic regression was reported to
provide a 96.2% classification accuracy, and MSM-T provided a 97.5% classification
accuracy. DGME was applied to this same classification task. The training data given to
the DGME algorithm was first passed through a whitening transformation which used
the means and standard-deviations of each feature, computed over the training data,
in order to normalize the data. The validation data was whitened using these same
mean and standard-deviation values. Using ten runs of 10-fold cross-validation, average
classification accuracies ranging between around 90-96% were achieved, depending on
the value chosen for the σ2

max hyperparameter. These results are shown, along with the
1-σ confidence interval, in Figure 4.5. Notice that there is a (possibly linear) negative
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correlation between σ2
max and classification accuracy, which underscores the importance

of choosing σ2
max well. It is also clear, however, that the accuracy is not overly sensitive

to the chosen value of σ2
max – even over a large range of σ2

max values, the worst accuracy
value Aw is only about 3.5% less than the best accuracy value Ab (i. e. Ab−Aw

Ab
≈ 0.035).

What is noteworthy about these results is the fact that DGME is able to give comparable
classification rates to those published in (Wolberg et al., 1995), while having the benefit
of being a much more flexible representation than logistic regression or MSM-T are. A
model estimated by DGME is more flexible in the sense that additional data can be used
to incrementally update the model, and expected values can be computed for any subset
of the observation elements.

4.3.3 Mackey-Glass Time Series Benchmark

An experiment described in (Kiong, Rajeswari, and Raoa, 2003) using the chaotic
Mackey-Glass equation was performed with the DGME/GMR method to investigate the
suitability of the method for prediction problems. The task is to predict the time series
given by

x(t + 1) = (1− a)x(t) + bx(t− τ)
1 + x10(t− τ) , (4.3.2)

where a = 0.1, b = 0.2, τ = 17 and x(0) = 1.2. The function to be approximated has
the form x(t + 6) = f(x(t), x(t − 6), x(t − 12), x(t − 18)). The DGME/GMR method
is trained on 1000 samples of f where 124 ≤ t ≤ 1123, and validated on another 1000
samples of f where 1124 ≤ t ≤ 2213. Again, the joint probability density is learned first,
and afterwards a regression function is extracted from the joint probability density that
approximates the function f . Figure 4.6 shows the performance of the DGME/GMR
method in predicting the sequence for the validation set.
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Figure 4.6: Prediction performance of the DGME/GMR method on the Mackey-
Glass benchmark. The line with points represents the trajectory
generated using this method.

4.3.4 Prediction with the Diabetes Dataset

To explore the regression capabilities of DGME + GMR, it was applied to the diabetes
dataset available as part of the scikit-learn machine learning software (Pedregosa et
al., 2011). This dataset consists of 442 training examples, each mapping a set of 10
physiological measurements taken on a patient to a value that indicates the amount that
diabetes ended up progressing in that patient. For the following experiments, only a
single feature from among the input measurements is considered, so that the results
can be easily displayed on a 2D plot. Figure 4.7 shows the results of applying ordinary
least-squares regression alongside DGME + GMR to this dataset. The explained variance
regression score was used to measure the quality of the fit to the data. This score is
computed as follows:

explained variance = 1−
∑

i (yi − ŷi)2∑
i y2

i

where ŷi represents a predicted value, and yi represents an actual measured value.

In the case of using least-squares regression, the explained variance was computed to be
0.47, while for DGME + GMR, the explained variance was 0.45. The data was variance-
scaled and mean-shifted before fitting the model with DGME, and the metaparameters
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Figure 4.7: DGME+GMR and OLS Regression using the Diabetes Dataset.

used for DGME were rM = 4, σ2
0 = 0.1, σ2

max = 1, Ninfl = 10, Nq = 20, αq = 0.9, and
ϵ = 0.1. The resulting number of components in the GMM was 9.

It is clear that if the data exhibits a global linear relationship, then OLS regression
will outperform other modelling techniques in terms of speed. Nonetheless, the DGME
+ GMR performance is still reasonably good, and also offers additional information
in the form of varying confidence bounds on predicted values (which come from each
mixture-component’s Σ value).

4.3.5 Concrete Strength Regression

A further scenario in which DGME was tested was in its ability to predict the compressive
strength of High-performance Concrete (HPC) given the densities of different ingredients
used to form the concrete and the age of the concrete. Experiments applying both neural
networks and standard least-squares linear regression to this problem were reported in
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Figure 4.8: Predicted strength values vs. actual strength values that resulted
from using DGME and GMR for regression.

(Yeh, 1998). A total of 1030 data-points were used for each experiment, and 3/4 of these
points were used as training data, and the remain 1/4 of the points were used to validate
the prediction accuracy. The primary measure of prediction accuracy used in (Yeh, 1998)
was the coefficient of determination (R2). The neural network used was trained using
backpropagation and had 1 hidden layer and 8 hidden units. The results reported for
linear regression had an average and standard deviation of R2 = 0.743± 0.030, whereas
the neural network resulted in R2 = 0.885± 0.036 with 3000 learning-cycles. A graph
depicting the regression results for DGME + GMR is shown in Figure 4.8.

These results were achieved with σ2
0 = 1, σ2

max = 2, and Ninfl = 25, Nq = 50, and
σ2

min = 0.001, where the training and validation data was preprocessed by shifting by
the mean and scaling by the standard-deviation of the training data. The coefficient of
determination associated with these results was R2 = 0.796± 0.030, which is better than
the R2 value from least-squares regression, and worse than the neural-network’s R2 value.
Again, while the regression performance doesn’t match that of the neural network, this
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can at times be a trade-off worth making for the flexibility that DGME offers in terms of
online learning and multidirectional regression.

4.3.6 Conclusion

The experiments presented in this chapter show that using joint-probability models for
modelling and regression is a viable alternative to standard regression methods in typical
application domains. By learning a joint probability density as an intermediate step to
deriving a regression function, every observable relationship between variables is captured,
regardless of its causality or lack thereof. This makes the joint probability density flexible
in the ways it can be used, in contrast to a regression function, which only represents a
single (directed) relationship between variables.

The next chapter takes the validation of this method one step further, by demonstrating
its use in a more practical scenario – localizing and controlling a legged robot.
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Chapter 5

Control

In addition to being useful for prediction and classification tasks, it is also possible to
use density functions estimated by DGME in order to control different kinds of systems.
This chapter provides a brief introduction to control systems, an explanation of different
ways that GMMs can be applied to control tasks, and some examples in which DGME is
applied to control tasks in specific domains.

5.1 Control System Basics

5.1.1 Anatomy of a Control System

The goal of a control system is to bring the output state of a process to a desired state
by applying a sequence of input control signals. Control systems are characterized as
being either open-loop, where the controller (responsible for generating the input control
signals) receives no feedback from the system, or closed-loop, where some kind of feedback
signal is received. In general, closed-loop systems tend to be more robust in rejecting
disturbances in the system, but can also be more susceptible to instability and oscillatory
behavior. In this chapter, closed-loop systems will be considered such as the one depicted
in Figure 5.1.

The process (i. e. “plant”) represents the part of the system which is influenced by the
controller in order to reach some desired state. The input to a control system is a desired
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Figure 5.1: Components of a Feedback Control System

state. An error signal is traditionally defined as the difference between the process
state and desired state. Specifically, the state can be defined as any set of variables
representing some aspect of the process. These variables can include both observable and
hidden variables. In the case of hidden variables, a model is necessary which specifies
the relationship between observable and hidden variables.

The controller takes the error signal as its input, and generates a control signal (i. e. “pro-
cess input”) u which influences the process and its resulting state. The goal of the
controller is to bring the error signal to have a value of zero, generally without “excessive”
oscillation around zero.

Typically the parts of a single-input / single-output control system are modelled by means
of a transfer function, which is derived by taking the Laplace transform of the input and
output time-domain functions. Linear systems with multiple inputs and outputs, on the
other hand, are traditionally modelled using state-space equations.

5.1.2 System Identification

In order for a controller to minimize the error, it must effectively issue a control signal
which moves the present process state towards the desired state. Given a function
f : u ↦→ ∆ym (mapping from a control to a resulting change in process state), the task of
the controller can be seen as performing an inversion of this function. In other words, the
controller must implement a function g = f−1 : ∆ym ↦→ u. If this function exists, then
given the desired state r and the present process state y(0)

m , the desired control signal can
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be obtained as u = g(r − y(0)
m ). This follows from the fact that we want the next process

state y(1)
m = r, and thus ∆ym = y(1)

m −y(0)
m = r−y(0)

m . To approximate g, f must be known
or approximated. The process of identifying f is known as system identification.

5.2 Using Mixture Models for Control

In the context of a control system, a GMM can be used to approximate the function
f mentioned in Section 5.1.2. More generally, a GMM can be used to estimate a joint
density between inputs, outputs, and possibly other auxiliary variables. After such a
model has been estimated, it is possible using the techniques presented in Chapter 4
to infer the required inputs that result in some desired output values. In what follows,
DGME is used in order to estimate how a robotic system moves. In this case, the entire
robot serves as the process that we are controlling, where the inputs are commands issued
to the robot, the outputs are the resulting movement of the robot, and auxiliary variables
include the state of the environment.

5.3 Practical Application: Robot Localization and
Control

In order to control a robot’s behavior, it is necessary to have a model of how the robot
behaves. Such a model is formally known as a motion model. The following sections
describe motion models in greater detail, and explain an experiment in which using GMM
based regression allows a legged robot to be more accurately controlled by including
information in the GMM about the robot’s environment.

5.3.1 Motion Modelling

A robot motion model, broadly speaking, represents the relationship between commands
issued to a robot and the robot movement that results from these commands. In many
modern robotic systems, an accurate and reliable motion model serves a crucial role. Most
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Simultaneous Localization and Mapping (SLAM) approaches, for example, use a motion
model in the prediction step of a recursive Bayesian estimation algorithm (S. Thrun and
Leonard, 2008). An accurate motion model can also be used to perform dead-reckoning,
aiding trajectory-following tasks when other forms of odometric information is limited.

In robotics it is a common assumption that a robot’s motion model is Markovian. In
this case, the motion model is often defined in terms of a probability density function
p(st | st−1, u), where u is a command issued to the robot when it is in state st−1.
Traditionally, u has been defined (for wheeled robots moving in a 2D plane) as either a
set of translational and rotational velocities to be used to directly control the robot’s
wheels (in which the state s represents the robot pose as a function of time), or as a
relative odometry (e. g. a vector

[
δ1 r δ2

]
) where the robot is commanded to turn by

an angle, move forward a certain distance, and turn again by another angle (in this case,
the robot pose represented by s does not depend on time) (Sebastian Thrun, Burgard,
and Fox, 2005).

Typically these probabilistic models depend on the existence of a closed-form parameter-
ized deterministic model, consisting of one or more equations that define a future state
in terms of the present state and the command issued. By adding uncertainties to this
deterministic model, it is transformed into a probabilistic model. For example, a simple
deterministic model relating distance to velocity, d = v∆t, can be made probabilistic by
treating d and v as Gaussian-distributed random variables: due to mechanical tolerances
in the robot, v has an associated uncertainty that can be modeled using the random
variable’s σ parameter. The dependence on closed-form models is found in nearly all
works on this topic up to now. While such models are useful when working with wheeled
robots in a plane, they are not adequate for modelling the complex motions of legged
robots, for which it is often difficult and time-consuming to find a deterministic mapping
from the command-space to the configuration-space.

Using DGME to build a mixture model that represents a motion-model not only overcomes
this limitation, but is also flexible in that it allows arbitrary sensory information to be
directly incorporated into the motion model. By allowing information describing the
terrain, for example, to be incorporated into the model, a more accurate motion-model
can be estimated, because the movement of a robot is closely tied to the properties of
the terrain on which it moves.
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5.3.2 Overview of Experiment

Learning the motion model of legged robots is challenging due to the complex kinematics
of the robot and the complexity of the interaction it has with the environment during
locomotion. Initial experiments were performed with the Scorpion1 robot to test the extent
to which a joint probability density of poses and commands could capture the robot’s
forward and inverse motion models. The pose of the robot was measured using a camera
and marker-based motion capture system. The pose of the robot includes the Cartesian
coordinates (x, y) and heading angle θ of the robot. The experimental environment
used was a smooth horizontal laboratory floor surface. The space of commands used
in the experiment to control the robot was the Cartesian product CT = F × L × T ,
where F = {−0.8, 0, 0.8}, L = {−0.8, 0, 0.8} and T = {−0.8, 0, 0.8}. The set F stands
for forward-backward movements with the maximum and minimum values of 1 and -1
respectively, and the set L stands for lateral left-right movements with the maximum
and minimum values of 1 and -1 respectively. Similarly, the set T stands for left-right
rotations with the maximum and minimum values of 1 and -1 respectively. The Scorpion
robot was sent random commands from the command space CT and all changes in the
pose of the robot were recorded. In the experiment, equal probabilities were given to
all of the commands, and on average each command was repeated (non-consecutively)
five times on the robot. By repeatedly issuing a command c, and observing the robot’s
resulting change in pose γ, a joint probability density over

[
c γ

]
vectors was built.

Using terminology from Section 5.1.2, c represents the control signal u, and γ represents
the change in process state ∆ym.

5.3.2.1 Extracted Forward Motion Model

In order to validate the GMM representing the learned joint probability density, the
function γ(c) = E[Γ | C = c] was computed from the GMM. Here, C and Γ represent
random vectors for the command and change in pose, respectively. This function
represents the forward motion model, and was used to estimate the pose of the robot
over 50 time-steps in a separate experiment to assess its prediction quality. Figure 5.2
shows the result obtained after this motion model was used to estimate the robot’s pose.
From the figure, it can be seen that the extracted function γ(c) predicts the robot’s

1A detailed description of this robot is available in (Klaassen et al., 2002).
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position relatively well.

5.3.2.2 Extracted Inverse Motion Model

The inverse motion model g : γ ↦→ c was also extracted from the learned joint probability
density, which maps the change in robot pose to a command to be sent to the robot. This
model was used to control the robot in a closed loop manner to traverse a figure-8 shaped
trajectory. Waypoints were sampled from the trajectory and the nearest waypoint to the
current position of the robot was used to calculate the necessary change in pose. The
inverse motion model was then used to determine which command to send to the robot,
given the necessary change in pose. Figure 5.3 shows the results of using the inverse
motion model in this way for trajectory following. As can be seen in the figure, the
robot is able to follow the trajectory reasonably well. Along the target trajectory where
the curvature is high, the robot tends to execute commands having larger rotational
effects.

5.3.3 Review of Motion-modelling Related Works

Before the appearance of probabilistic SLAM methods, getting an accurate estimate
of a robot’s position often relied on a parameterized model relating data reported by
odometry sensors to the estimated motion of the robot. The problem of robot calibration,
which involves properly selecting the parameters of this model, has been the topic of
various works. For example, the work of Borenstein and Feng (1996) presents methods
for manually choosing these parameters for wheeled robots.

After SLAM methods started to become more prevalent, it became possible to use
probability distributions reported from the SLAM algorithm to estimate a robot’s ground-
truth pose. This estimate could then be used in conjunction with calibration methods to
automatically learn the parameters of a motion model by simply moving the robot.

Roy and Sebastian Thrun (1999), for example, use a maximum likelihood method for
estimating model parameters. The parameters θ are updated with an exponential
estimator that integrates the parameter values θ∗ that maximize the likelihood function
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(a)

(b)

(c)

Figure 5.2: Performance of the motion model in estimating the pose of the
Scorpion robot on a flat surface: (a) pose estimation in the x-
direction vs. time-steps. (b) pose estimation in y-direction vs.
time-steps, and (c) heading estimation vs. time-steps.
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Figure 5.3: The inverse motion model used in trajectory following. The figure
shows the robot while following the trajectory, and the arrow in the
figure shows the current orientation of robot.

p(st+1 | st, o, θ∗), where st are laser-scan measurements and o are odometry measurements.
By using an exponential estimator, incremental updates to the parameters are possible
which do not depend on keeping a history of sensor-measurement data.

In work done by Eliazar and Parr (2004b), the model parameters are learned using an
Expectation-Maximization (EM) method, in which the expectation step involves using
the SLAM algorithm (in this case, DP-SLAM 2.0 (Eliazar and Parr, 2004a)) to generate
a set of possible trajectories for a given set of motion model parameters and associated
likelihoods, and the maximization step uses a least-squares approach for determining the
set of model parameters that maximizes the likelihood values. While the least-squares
method presented in (Eliazar and Parr, 2004b) assumes that a history of the training data
is available, Visatemongkolchai and Zhang (2007) apply two incremental least-squares
methods in order to learn model parameters. Because of their incremental nature, these
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methods can be used in an on-line fashion, updating the model parameters after each
new set of measurements.

Stronger and Stone (2005) introduce a technique for calibrating sensor and motion
models simultaneously. These models are represented in a deterministic manner using
polynomials. The polynomial coefficients are learned with a two-step cyclic algorithm
in which the first step estimates the sensor-model parameters given the current motion-
model, and the second step estimates the motion-model parameters given the current
sensor-model.

The method presented by Kaboli, Bowling, and Musilek (2006) also calibrates sensor
and motion models simultaneously, but in contrast to (Stronger and Stone, 2005), uses
a Markov chain Monte Carlo (MCMC) technique in which a sample is drawn from a
posterior distribution over model parameters. To estimate the true model parameters,
the sample’s elements are either averaged, or the maximum a posteriori sample element
is selected. Additionally, the sample’s elements can be used to approximate model
posteriors. Each of these methods were tested in a Monte Carlo Localization scenario on
a simulated wheeled robot and on a Sony AIBO robot.

Martinelli, Tomatis, and Siegwart (2007) present a method of estimating the parameters
of an odometry error model by using a modified Extended Kalman Filter (EKF) to
simultaneously estimate the robot pose and error parameters. The odometry model
relates odometry measurements (i. e. wheel encoder measurements) of a wheeled robot
to the robot’s estimated true odometry. The error model is split into systematic and
non-systematic components, and each component is separately estimated based on the
other component’s estimate. Sjoberg, Squire, and Martell (2007) present a method that
uses a slightly simplified deterministic model from that presented in (Eliazar and Parr,
2004b), but in which the model’s random variables are represented using a bimodal
Gaussian Mixture Model. The method depends on the use of a SLAM method (DP-SLAM
2.0 is used), and the model parameters are estimated by observing the motion of the
particles in a particle-filter. As in (Roy and Sebastian Thrun, 1999), an exponential
estimator was used to make the method work in an online fashion, in which the decay
factor is adjusted according to the average quality of the particles in a particle-set.

The work done by Hoffmann (2007) does not deal with the problem of parameter
estimation, but instead presents a way of incorporating proprioceptive information
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into the motion model. To do this, the motion model’s error is decomposed into two
components: the error ϵcoll due to collisions and slippage, and the error ϵodo intrinsic
to the robot morphology and odometry sensors. Collisions and slippage conditions are
modeled as the states of a state-machine, and the value of ϵcoll depends on which state the
robot finds itself in. Transitions between states occur due to the observation of specific
proprioceptive data patterns.

5.3.3.1 Suitability for Legged Robots

Nearly all of the methods in the previously mentioned works define the motion model as
a set of fixed form “ideal model”2 equations to which uncertainty is added by treating
some of the variables as random. Furthermore, every one of these methods requires that
the motion model be parameterized with a fixed number of parameters.

For kinematically complex legged robots, developing the equations of an ideal model can
be very difficult and time consuming3. Because of this, these methods generally do not
lend themselves well to modelling the motion of legged robots.

To properly capture the motion model of such a legged robot, as few as possible assump-
tions should be made about the form of the motion model. For this reason, the DGME
method discussed in Chapter 3 is used, which allows for a flexible model form that can
be dynamically changed over time. The details of how this method is applied to the task
of motion-modelling is discussed in the next section.

5.3.4 Motion Model Representation

Motion models are frequently defined in the form of a conditional state-transition
probability density, where the state is defined as the robot’s pose, and the probability
is conditioned on the commands issued to the robot. When operating in physically
unobstructed areas, the change in a robot’s pose from the current state to the next state
depends much more on the command issued to the robot than it does on the robot’s

2by “ideal model”, a model which assumes an ideal, non-stochastic world is meant.
3There are some legged robots (e. g. the Sony AIBO) whose kinematics are simple enough to develop

equations approximating an ideal model.
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current pose. Because of this, if we assume the absence of obstructions, the motion model
can be simplified by representing it as a conditional probability of the change in pose4

conditioned upon the command issued.

DGME was chosen for estimating the motion model, so that the number of Gaussian
components can vary in order to best fit the characteristics of the underlying system.
The resulting model, a weighted set of Gaussian components, can be decomposed into a
probability distribution over the change in pose of the robot for each unique command.

5.3.4.1 Formal Description

In general, a motion model can be represented in the form of a joint pdf over commands,
environmental states, and change in pose values. When the set of possible commands is
finite and discrete, a constraint can be added to DGME such that observations associated
with a particular command will never be merged into mixture components associated
with a different command. In this case, we can view the model as being decomposed into
several sub-models, one per distinct command.

Formally, we can represent the motion model in this case as {M : C×V → P} where C is
the set of all commands, V is a set of environmental states5, and P is a set of probability
density functions p(γ), where γ is a change in pose measurement. In simple cases where
the robot’s environment is not expected to change much, V may be treated as containing
one static environmental state. In this case, the model can be written as {MS : C → P}.
In practice, a robot’s command space (i. e. the range of possible commands that can
be issued to the robot) can be discretized6 into n commands {c1, c2, ..., cn}, where each
command is a vector representing various parameters that can be controlled for a robot
(e. g. for a wheeled robot, these parameters might be the angular velocity of each wheel).
If the commands are discretized in this way, then according to the mapping defined by
MS , a corresponding probability density in P (that is a likelihood function for γ) exists
for each of these commands. We represent each command cj’s corresponding density

4This change in pose is measured relative to the robot’s pose prior to the execution of a command.
5An environmental state simply represents some information about the environment immediately

surrounding the robot. For example, it could include information about the terrain’s roughness, slope,
or moisture content.

6Although the remainder of this chapter assumes a discrete command space, the representation
presented here can also be used with continuous command spaces.
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Figure 5.4: Motion model representation: for each command in the discretized
command space, a conditional probability distribution is maintained
as a weighted sum of Gaussians.

function p(γ | cj) ∈ P as a variable-sized set of “weighted Gaussian” pairs,

Gj ≡ {(gj1(γ), wj1), (gj2(γ), wj2), . . . , (gjm(γ), wjm)}, (5.3.1)

such that
p(γ | cj) =

m∑
i=1

ŵjigji(γ), (5.3.2)

where gji(γ) is a conditional multivariate Gaussian distribution:

gji(γ) = pji(γ | cj) ∼ N (µji, Σji), (5.3.3)

and

ŵji = wji /
m∑

k=1
wjk. (5.3.4)
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A schematic depiction of this representation for the case of discrete command spaces can
be seen in Figure 5.4. The wji values are unnormalized weights, and are equivalent to
the number of observations that have contributed to the corresponding Gaussian.

5.3.5 Learning the Motion Model

The method in which DGME was employed for learning a motion model is described
here. Though it is possible to easily incorporate several different forms of sensory data
into the motion-model, in this discussion the measurements are restricted to include only
the robot’s pose for the sake of simplicity.

The primary algorithm of this method is depicted in Algorithm 7.

Algorithm 7: Incremental Motion Model Update
Data: Sequence of

[
command pose measurement

]
pairs.

Result: Dynamically updated motion-model for each command.
Select and perform command cj ∈ C on robot;
ζ ← new pose measurement;
repeat

ζprevious ← ζ;
Select and perform command cj ∈ C on robot;
ζ ← new pose measurement;
γ ← ζ − ζprevious; // change in pose
Incorporate

[
cj γ

]
into the model, updating parameters of p(γ | cj);

end

Initially, the robot’s pose ζ0 is recorded, and a command cj is chosen from the set of
possible commands C. This command is issued to the robot, and the final pose ζ1 is
recorded after the command has completed its execution. The measurement vector γ

is calculated as ζ1 − ζ0 (i. e. the robot’s change in pose), and incorporated into the
motion model using the DGME algorithm. Again, a command is selected, and this
procedure is repeated ad infinitum, calculating the measurement vector in the same
manner (subtracting the previous pose measurement from the current).

Because DGME is incremental in nature, the model can be updated without the need to
store a history of observations. This incremental nature reduces both the memory and
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computational requirements of this algorithm considerably, in contrast to methods in
which some or all observations are required to re-estimate the density.

5.3.6 Learning an “Extended” Model

The discussion thus far has assumed that the model represents only a simple mapping
between commands and pose differences. The GMM based model can, however, be
extended to include exteroceptive and proprioceptive data7.

Specifically, if we have some data (e. g. information about the terrain) we would like
to incorporate into the model represented as z, the change in pose vector γ can be
augmented by z to form a new data vector

d = γ∥z

=
[
x1 · · · xn z1 · · · zm

]
.

(5.3.5)

It is then possible to use d in the same way that γ was previously used in Section 5.3.5.
The only necessary change is to modify Algorithm 7 such that the measurement z is
taken before the command cj is issued to the robot. The vector d is then formed and
passed to DGME_UPDATE_FROM_OBS in place of γ.

The resulting motion model will now represent p(γ∥z | cj), where each Gaussian compo-
nent gji of this density function has a mean vector µd

ji = µγ
ji∥µz

ji and covariance matrix

Σd
ji =

⎡⎣ Σγγ
ji Σγz

ji

Σzγ
ji Σzz

ji

⎤⎦.

5.3.7 Using the Extended Model

Having built a motion model with these augmented observation vectors, we can now
consider how to make use of the model. For the purposes of modelling motion, the

7Data is most effectively incorporated when it can in some way be represented as a vector in a
Euclidean space. Fortunately there is often a means of representing data in this way.
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density p(γ∥z | cj) is not directly useful. Rather, we would like to have p(γ | cj, z).
To calculate the latter density from the former, we begin by writing the conditional
probability relationship for the latter density:

p(γ | cj, z) = p(γ∥z | cj)
p(z | cj)

. (5.3.6)

Because p(γ∥z | cj) is represented as a mixture of Gaussians, the numerator in this
equation can be written as

p(γ∥z | cj) =
m∑

i=1
ŵd

jig
d
ji(γ∥z), (5.3.7)

where
gd

ji(γ∥z) = p(γ∥z | cj) ∼ N (µd
ji, Σd

ji). (5.3.8)

Given how marginalizing out variables in a Gaussian distribution results in another
Gaussian distribution (see (4.2.6)), the denominator in (5.3.6) can be written as

p(z | cj) =
m∑

i=1
ŵz

jig
z
ji(z), (5.3.9)

where ŵz
ji = ŵd

ji and
gz

ji(z) = p(z | cj) ∼ N (µz
ji, Σzz

ji ). (5.3.10)

Here we have marginalized the γ components out of p(γ∥z | cj). Thus, by using (5.3.7)
and (5.3.9), both which can easily be calculated from our motion model, we can determine
p(γ | cj, z), which represents an improved motion model that takes advantage of additional
sensory data.

5.3.8 Effect of Incorporating Terrain Data

Cross-validation was used in order to evaluate the accuracy of a motion model: a set
of observations (either via simulation or from a real robot) is taken, and one portion
of these observations is used for building the model, while the remaining observations
are used for validating the model’s ability to predict motion. This technique was chosen
to assess the extent to which terrain information contributes to model accuracy. In
particular, a total of 390 data observations from the Scorpion robot were collected, in
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which every possible command of the form
[
long lat turn

]
8 was issued 5 times with

three different initial robot orientations (i. e. each command is issued a total of 15 times),
where long, lat, turn ∈ [−0.5, 0, +0.5]. Not including the no-op command

[
0 0 0

]
&

this results in a set of 26 distinct commands. With the experimental setup pictured in
Figure 5.5, the following procedure was used for collecting the data:

1. A command cj is chosen randomly (without replacement) from the above defined
command set.

2. The robot is placed on an 18◦ inclined slope with a starting orientation θ ∈
{0◦, 90◦,−90◦}9. The orientation angle is cycled each time this step is performed.

3. The current robot pitch and roll angles are recorded in the vector z. This serves
(for the case where the terrain is an inclined plane, as in this experiment) as an
indirect measurement of the shape of the terrain the robot is on.

4. The robot is issued the command cj. Each command’s execution requires a fixed
time duration to carry out.

5. Before and after executing a command, the robot’s pose is recorded using a marker
based visual pose tracking system6.

6. The observation (cj , z∥γ) is added to a sample set S1, where z =
[
robot pitch robot roll

]
and γ is the change in pose

[
∆x ∆y ∆z ∆roll ∆pitch ∆yaw

]
.

7. Steps 3-6 are repeated 5 times.

8. Steps 2-7 are repeated until the robot has been placed with each starting orientation.

9. Steps 1-8 are repeated until all commands have been chosen.

The observations from this experiment were used for cross-validation in which the model
was learned using randomly selected training sets, and was validated by calculating the log-
likelihood of the training data given the learned model, L = ∑N

n=1 ln
{∑M

i=1 ŵjigji(γn)
}

,

8The
[
long lat turn

]
values influence the robot’s motion in the forward-backward, lateral-left-right,

and turning-left-right directions, respectively.
9When θ = 90◦, the robot is turned so that it looks down the incline.
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Table 5.1: Model Quality Comparison: a 10-fold cross-validation is performed
for data sets with and without terrain information. Shown are the
mean and standard-deviation of the log likelihood values, averaged
over 10 runs.

Log Likelihood

Data Set # Observations Without
Terrain

With
Terrain

Real 390 −371.9± 3.9 −162.2± 4.0
Simulated 830 308.5± 7.5 402.5± 7.9

where ŵji is the associated normalized mixture-parameter of the ith Gaussian in the
model for a command cj.

The cross validation was performed using the collected data for two different cases:

1. The first case uses the “full perception” sample S1 that contains all the measured
information about the terrain. In this case, the conditional density in (5.3.6) is
calculated from the model.

2. In the second case, the model is trained and validated using a “limited perception”
sample S2, in which the z∥γ component of each sample S1 is replaced with γ.
In other words, for each observation (cj, z∥γ) in S1, there is a corresponding
observation (cj, γ) in S2. In this case, the model estimates the conditional densities
in (5.3.2).

For both cases, a stratified 10-fold cross validation was performed 10 times, and the
results averaged. The results for both cases are shown in Table 5.1. To test the validity
of this comparison when there are a larger number of observations, another data set was
generated (containing a total of 830 observations) using a simulation. This data was
analyzed in exactly the same manner as the data collected from the real robot, and the
results are also shown in Table 5.1. With both the real and simulated data, the likelihood
was much higher in the case where terrain data was included in the model. This shows
that incorporating and making use of terrain data in the model substantially improves
the extent to which the model describes the robot’s motion.
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Figure 5.5: Experimental Setup: the Scorpion robot executes several movement
commands in different orientations on a sloped plane.

5.4 Controlling Multimodal Processes

Using the notation from Section 5.1.2, most controllers are based on the assumption
that the mapping between ∆ym and u is bijective (i. e. that every ∆ym value maps to a
unique u value, and vice-versa). In real-world situations, this will not always be the case,
however.

5.4.1 Limitations of Modern Control Methods

The requirement that the u⇔ ∆ym relation be bijective is not realistic for most natural
processes, and as a result, much effort is invested in methods for making this possible,
typically by engineering a new process or augmenting an existing process specifically so
that it possesses this property. Furthermore, most modern control systems depend on
the assumption that the process being controlled can be modelled using linear equations.
When this is not the case, further effort must be expended augmenting the process in
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order to linearize it.

Though most control methods do assume that a system is linear or linearizable, there are
some modern control methods which do not assume any sort of globally linear mappings
from input to output space. Such methods, known as switching state-space models (see
Shumway and Stoffer, 1991), divide the state-space into multiple regions over which
different controllers are made responsible. Although to a certain extent these methods
share the local modelling property of DGME, they still rely heavily upon traditional
controller design, and are bound by the limitations of traditional controllers.

In order for such a switching state-space model to properly handle multimodality in
the modelled process, every mode in a process’ input-output joint pdf that corresponds
to a given change in state must be split into separate regions, each having a separate
controller. This can become unscalable as the amount of multimodality in a system
increases, and is unable to gracefully adapt to systems in which the quantity and behavior
of states changes over time. In contrast, the system-identification and control methods
presented in this thesis (in Chapter 3 and this chapter, respectively) do not require
separate controllers for each case of a process’ multimodality, but rather provide a general
means of handling any amount of multimodality in a process.

5.4.2 The Challenge of Multimodal Systems

A typical means of controlling a system based on a probabilistic model is to employ
conditional expectation, determining the expected value over a subspace of some random
vector10, given a specific value for some other random vector. Though this works well
for cases in which a distribution has a single mode, when the (conditional) distribution
has more than one mode, using conditional expectation to control a system can often
produce undesirable results. This is illustrated in Figure 5.6. In contrast to the case of
unimodal distributions, for which the expected value corresponds to the most probable
value, the expectation of a multimodal distribution can often end up being a rather
improbable value. If we were, for example, to interpret x in Figure 5.6 as the final resting
place of some projectile which has been propelled, then there is a high likelihood that
the projectile will come to rest somewhere near x1 or x2, but it is rather unlikely that

10For generality, a random vector can consist of one or more elements, each being a random variable.
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the projectile will stop moving near E[x]. presented.

Figure 5.6: Expectation of a Multimodal Distribution: instead of representing
the value of highest likelihood, expectation results in a value with a
relatively low likelihood.

5.4.2.1 Projectile in a Magnetic Field

An example will now be presented that provides a more detailed illustration of the
problem just described, and will be used throughout the remainder of this chapter. The
projectile in a magnetic field problem is defined as follows: a ferromagnetic (i. e. able to
be influenced by magnetic fields) projectile which is constrained to move in a 2D plane is
positioned at a starting location. From this location, it is propelled within a rectangular
area towards the opposite side of the rectangle. The initial velocity and projectile mass
are held constant, while its starting angle can be chosen as desired. See Figure 5.7 for a
visual depiction of this scenario.

If we were asked to select an angle which would cause the projectile to intersect the
opposite side of the rectangle at some specified location, this would not be very difficult
provided that we had a model which maps angles to locations. In the case of our proposed
scenario, however, the problem is that there is a magnetic field which exerts a force on
the projectile while it is propelled. To make matters worse, this field is not constant – its
direction and magnitude at a given time are not known in advance.

In the interest of aiding understanding, the projectile problem we will consider here will
constrain the initial projectile angle (in degrees) θ0 so that θ0 ∈ [−15◦, 15◦]. Furthermore,
the initial position of the projectile will always be at (0, 0) in the x-y coordinate system

92



5.4. CONTROLLING MULTIMODAL PROCESSES

Figure 5.7: Basic Scenario of the projectile in a magnetic field problem: the
projectile starts at position x0 at an initial velocity of v0 and initial
angle of θ0, and ends when it intersects y = 10 at position xf .

shown in Figure 5.7, the initial velocity is fixed at v0 = 5 m/s, and the mass of the
projectile is fixed at m = 0.4000 kg. Thus the only value that can be varied is θ0 – this
can be considered to be the input variable in the projectile control system. The output
variable of this system is the x-position of the point at which the projectile intersects the
y = 10 line.

Figure 5.8: Projectile motion under the influence of a constant unidirectional
magnetic field: several θ0 values were randomly chosen, and each
corresponding projectile trajectory is shown. Each point represents
the projectile’s location at a particular simulation step.
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5.4.2.2 Simple Case: Constant Magnetic Field

Now that we have defined the problem, let’s consider how we might apply mixture-model
based control to a simplified variant of the problem, where the magnetic field FB has
a constant magnitude and direction. Let’s assume that that the field always exerts a
force on the projectile in the negative x direction. Figure 5.8 shows several examples
of the simulated projectile motion when FB = 0.1000 N and the simulation step size is
0.1000 s.

In this simple scenario, it turns out that the relationship between θ0 and xf is linear.
If we train a mixture model with several

[
θ0 xf

]
training examples, we end up with a

mixture model like the one shown in Figure 5.9. With such a simple model, predicting
an appropriate θ0 value to achieve a desired xf value works quite well. For example, in
Figure 5.10, GMR was used to predict the θ0 value that would result in xf = 0 (i. e. the
final projectile location being (0, 10). The predicted value was θ0 = 2.725° and the
resulting final-x position of the projectile was xf = −2.578× 10−4.

5.4.2.3 Complex Case: Bidirectional Magnetic Field

Though traditional methods of regression (in addition to GMM based regression) will
perform well on the constant-field scenario just described, they fail when faced with more
complex scenarios. Let us now assume that instead of having a magnetic field which
has a constant direction and magnitude, it has a direction which changes from time to
time. In particular, the direction is held fixed for the duration of any particular run of
the projectile simulation, however it can change from one run to the next. Furthermore,
we will assume that there are only two possible directions that the field can have, either
in the negative x direction, or in the positive x direction, and that the magnitude of
these two fields is the same (FB = 0.1000 N). Lastly, let us assume that the field which
pushes the projectile to the left (i. e. in the negative x direction) is present 70% of the
time, while the other field is present 30% of the time.

Figure 5.11 shows a GMM which was learned from
[
θ0 xf

]
observations in this new

bidirectional scenario. The difference between this model and the model in Figure 5.9
is that in the bidirectional case we end up with a conditional model having two modes
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Figure 5.9: Mixture model resulting from applying DGME using
[
θ0 xf

]
training

examples when the magnetic field is set to a constant value of
FB = 0.1000 N and only pushes the projectile to the left. Because
the ellipses are extremely narrow (nearly line-segments), they have
been enlarged by a factor of 2 to improve their visibility.

instead of one (see Figure 5.12 for a depiction of this conditional model). If we use GMR
naively with the bidirectional model and attempt to achieve a target value of xf = 0, the
initial angle predicted in this case is θ0 = 1.076° which results in the trajectory shown in
Figure 5.13. This figure shows the results of using this value of θ0 for both the left-pulling
magnetic field (which occurs for approximately 70% of the simulation-runs), and the
right-pulling magnetic field (which occurs for approximately 30% of the simulation-runs).
The left and right-pulling cases result in xf values of −0.2873 and 0.6631, respectively.
These results are relatively poor due to the invalid assumption that the model we are
using for regression is unimodal. Most other regression methods (which also make this
invalid assumption) will exhibit the same poor result.
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Figure 5.10: Result of using GMR with the model in Figure 5.9 to control the
projectile in a unidirectional magnetic field. The desired target
value is xf = 0, and the predicted control value is θ0 = 2.725°.

5.4.2.4 Properly Handling Multimodality: Gaussian Mixture Control

To overcome the problems that occur when assuming a model is unimodal despite it
actually being multimodal, a new method is proposed here called Gaussian Mixture
Control (GMC). The basic idea is that instead of blindly choosing the expected value
of a conditional distribution, each mode of the conditional distribution is evaluated in
terms of its suitability for leading to a desired outcome. The mode that results in the
most favorable outcome is chosen and its expected value is used instead of the expected
value of the full conditional distribution. This may be better explained by observing how
the method is applied in the scenario mentioned in Section 5.4.2.3.

To explain how GMC is implemented, we will first introduce a bit of notation: a Gaussian
component (i. e. consisting of the parameters

[
index w µ Σ

]
) having the index b from

model A is represented with the notation GA
b . Similarly, wA

b , µA
b , and ΣA

b represent the
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Figure 5.11: Mixture model resulting from applying DGME using
[
θ0 xf

]
training exam-

ples when the magnetic field is set to a constant value of FB = 0.1000 N and
only pushes the projectile to the left 70% of the time, and to the right 30% of
the time. Because the ellipses are extremely narrow (nearly line-segments),
they have been enlarged by a factor of 2 to improve their visibility.

Figure 5.12: Conditional model derived from the model in Figure 5.11, conditioned on
the final position being set to xf = 0. Depicted here are the individual
components of the conditional mixture model, scaled by their mixture weights,
along with an indication of the actual weight of each component. Notice that
there are only two components having larger weights, and these represent the
two θ0 values that lead to xf = 0.
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Figure 5.13: Results of naively applying GMR to predict the control value θ0 in
an attempt to achieve a target value xf = 0. The poor prediction
results are due to the incorrect assumption that the model used for
prediction (shown in Figure 5.12) is unimodal.

weight, mean, and covariance of the component GA
b , respectively. A Gaussian component

not necessarily connected with a particular model can be simply represented as Gb, where
b is some index that is used to identify the component. Note that the index used doesn’t
imply anything about the size of a model – it is possible, for example, for a model to be
comprised only of a single component having an index value of 50.

Gaussian Mixture Control consists of the following basic steps:

1. Compute the inverse conditional model V from the mixture distribution
representing the joint pdf. The inverse model is a conditional model where the
variables that are conditioned upon are the outputs to the system under control, and
the resulting distribution is defined over the input variables. In the projectile problem
described in Section 5.4.2.3, the output is the final x position of the projectile, and the
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input is the initial angle. Therefore, in this case we compute p(θ0 | xf = 0), depicted in
Figure 5.12, from the pdf p(xf , θ0).

2. Each "high-weight" component in V is used as a basis to construct one of
several forward conditional models Ft. A user-selected component-weight thresh-
old is used to select all of the high-weight components in V . For every component GV

t

selected from model V , the mean µV
t will be used to construct a forward conditional

model, Ft. This forward model will be evaluated for its likelihood of achieving the desired
result. Note that Ft has the same number of components as V , and that each component
GFt

j is associated with GV
j . If we use the same bidirectional magnetic-field scenario

described in Section 5.4.2.3, and set the normalized component-weight threshold to 0.05,
then we are left with two components, pictured in Figure 5.14. The forward conditional
models associated with these two components are shown in Figures 5.15 and 5.16.

Figure 5.14: Mixture components of model V whose normalized weights exceed
0.05. These components have (µθ, w) values of (−2.726, 0.2607)
and (2.725, 0.6916).
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Figure 5.15: The forward model p(xf | θ0 = −2.726).

Figure 5.16: The forward model p(xf | θ0 = 2.725).
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3. Smooth each forward conditional model. How do we determine from a partic-
ular forward conditional model Ft whether the mean µV

t associated with this model is
likely to achieve the desired result (i. e. the desired output value)? We must first smooth
Ft. This means merging together all the clusters of components in Ft that are “near” each
other (determined by some user-defined distance metric11 and distance threshold dth).
This smoothing operation results in yet another model, St, where GSt

q is the component
in St into which GFt

t was merged. Notice how each index t of the components selected
from V in step 2 is linked to an index q of a component in model St. The pseudocode
for the algorithm used to smooth the model is shown in Algorithm 8.

4. Evaluate each smoothed model. In order to evaluate a particular smoothed
model St, a loss metric Lt is defined as follows:

Lt =
∑

k ̸=q wSt
k

wSt
q

(5.4.1)

This metric essentially tells us how likely it is that something other than the desired
output value will result from choosing µV

t as our input value. If we have N smoothed
models, then we will compute N corresponding loss metric values. After we have loss
values for each St, we can determine the value of t which specifies the high-weight
component from V who, along with its neighboring mixture components, is most likely
to result in the best input value. The best t value is given as:

t∗ = argmin
k

Lk . (5.4.2)

Of course it may be that there is no good choice available for an input value, which
would be the case if mink Lk > C where C is some chosen maximum loss value that is
deemed tolerable.

5. Choose the best input value. After the best model, St∗ , has been chosen in step
4, we use the set of indices T computed in SMOOTH in connection with this model in order
to select an appropriate subset of the components in V . This subset forms a new inverse

11In the examples given in this dissertation, the distance metric used is the Euclidian distance between
the means of the components.
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Algorithm 8: Pseudocode for SMOOTH Algorithm
input : M – unsmoothed model with components {G1, G2, · · · , GN}

t – index of component in M to be tracked
dth – distance threshold

output : S – smoothed model
T – the indices of components in M merged with GM

t

q – index of component in S that GM
t was merged into

Function SMOOTH(M , t, dth)
N ← ∥M∥;
Let E = {eij | 1 ≤ i < j ≤ N}; // eij is the distance from Gi to Gj

Norig ← N ;
R← {}; // indices of components removed from model
T ← {t};
q ← t;
while min(E) > dth do

N ← N + 1; // index of new mixture component
eij ← min(E);
E ← E \ {eij};
R← R ∪ {i, j};
GN ← component resulting from merging Gi and Gj;
if i == t and j ≤ Norig then

q ← N ;
T ← T ∪ {j};

end
if j == t and i ≤ Norig then

q ← N ;
T ← T ∪ {i};

end
M ←M ∪ {GN}; // add new component to M
E ← E ∪ {ekN | k ∈ {1, · · · , N − 1} \ R}; // add new distances to E
E ← E \ {epq | p ∈ R or q ∈ R}; // remove old distances from E

end
S ←M \ {Gk | k ∈ R};
return S, T, q;

end
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model VGMC = {GV
i | i ∈ T} (shown in Figure 5.17) that will be used instead of V to

predict a desired input value (i. e. θ0) using GMR.

1. Results of Applying GMC to Bidirectional Magnetic Field Problem The filtered
inverse model VGMC predicts a desired initial angle of θ0 = 2.725°. The resulting
performance of the simulation with this predicted θ0 value is shown in Figure 5.18.
The result is good for the predominantly occurring magnetic-field state (left-
pushing), while it is understandably worse for the right-pushing magnetic field. A
key observation is that most of the time the target result of xf = 0 is reached within
a very tight tolerance, though occasionally it is not reached. In contrast to this, the
case where we predicted θ0 using naive GMR under the assumption of a unimodal
model ends up with the target result never being very close to the desired xf

value. This illuminates an important consideration: GMC is important to use
in cases when extreme accuracy some or most of the time is far more
important than rough accuracy all of the time.

Figure 5.17: Filtered inverse model VGMC , which possesses the components
that are best fit for predicting the value of θ0 which will lead to a
resulting target value of xf = 0.
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Figure 5.18: Result of applying VGMC in Figure 5.17 for predicting θ0. The predicted best
θ0 value was 2.725°, and the resulting target value was xf = −0.000 209 2
under a left-pushing magnetic field. The right-pushing field gives a worse xf

result, as expected, but occurs less frequently than the left-pushing field.

The results of using GMC and the naive prediction methods are summarized in
Table 5.2. When using GMC method for control, the mean absolute deviation of
the actual target value from the desired target value is lower than when using the
naive GMR method.

Magnetic Field* Technique Predicted θ0 xf (left) xf (right) MAD†

100% Left Naive GMR 2.725° −2.578× 10−4 N/A 2.578× 10−4

70% Left, 30% Right Naive GMR 1.076° −2.873× 10−1 6.631× 10−1 3.978× 10−1

70% Left, 30% Right GMC 2.725° −2.092× 10−4 9.521× 10−1 2.801× 10−1

* This column specifies the probabilities that a given simulation run will have a
particular kind of magnetic field.

† Mean Absolute Deviation: 1
N

∑N
i=1 | x

(i)
f − 0 |

Table 5.2: Summary of Results Comparing GMC with Naive Methods.
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Chapter 6

Conclusions and Future Directions

This dissertation has presented two significant contributions to the scientific community
in the areas of density estimation and control. The first, Dynamic Gaussian Mixture
Estimation (DGME), enables one to flexibly model online streams of observations so that
prediction, classification, and inference can be performed on the estimated models. The
second, Gaussian Mixture Control (GMC), complements DGME, and provides a means
of controlling processes that exhibit multimodal behavior. Though these methods are
valuable contributions in their own right, there are still many areas to be explored, and
ways to enhance their functionality. Two general areas worth exploring in the future are
included here: handling non-stationarity in modelled processes, and deep mixture-model
architectures.

6.1 Extending DGME to Handle Non-stationary
Processes

Although Chapter 3 explained the standard DGME algorithm in detail, there are various
ways that the algorithm can be extended. This section introduces ideas that suggest a
potential way of extending DGME to enable it to better handle the modelling of processes
that are quasi-stationary or non-stationary.
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6.1.1 Suspending Judgment: Dual-model DGME

The simple rule of using likelihood to determine the “belongingness” of an observation to
a model works well when the system being modelled is stationary (i. e. the relationships
between the system variables that are being modelled do not change with respect to
time). When the system exhibits non-stationary behavior, however, using the likelihood
alone can lead to problems.

For example, assume that a process that is being modelled exhibits one kind of behavior
initially, and this behavior continues for some time. After some time, the model becomes
“established” or “entrenched” – the Gaussians which exist in the model will have a very
high probability mass in comparison with new observations. This is not a problem, unless
the behavior of the process changes at some later point in time.

When there is a lot of “pre-existing” weight (probability mass) in the model, then a novel-
observation will result in the generation of a new component that has a comparatively
small probability mass with respect to the rest of the model’s components. As a result,
if further novel observations happen to be encountered in the neighborhood of this new
component, they will result in the generation of additional components instead of being
merged with the already-existing low-mass component. This can lead to problems due to
not having enough data to adequately estimate each component’s covariance matrix (see
Section 4.2.4).

The standard single-model version of DGME suffers from the problem described above.
However, a variant of DGME called Dual-model DGME handles this problem by building
two models in parallel, a “primary” model M1 which represents the “status quo” knowledge
that has been collected thus far, and a “secondary” model M2 which keeps track of novel
observations. As new observations are made available to the DGME algorithm, they will
be evaluated in terms of how suitable they are to be merged into existing components of
M1. If they are found to be novel with respect to M1, then they will be incorporated into
M2 instead of being added as new components in M1. These two models are regularly
compared with each other, and for each component of M2, a decision is made regarding
whether to:

1. do nothing (leave the component in M2)
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2. merge the component from M2 into a component of M1 (removing it from M2).

3. add the component from M2 as a new component of M1 (removing it from M2).

6.1.2 Quasi-stationary and Non-stationary Processes

One difficulty faced by many modelling techniques (including nearly all batch estimation
techniques) has to do with the common assumption that a modelled process is stationary
– that its behavior follows a pattern that is independent with respect to absolute time1.
This poses a serious problem because it significantly restricts the set of processes which
can be modelled. There likely exist as many or more non-stationary processes in “the
real world” than there are stationary processes. Processes can be further classified
as quasi-stationary, which indicates that a process’s behavior lies somewhere between
stationary and non-stationary.

When using single-model2 DGME, the primary difference between quasi-stationary and
non-stationary processes has to do with the extent to which new components will be
created as the model is being built. Observations from quasi-stationary processes will tend
to get merged into existing components, whereas the observations from a non-stationary
process will tend to create new components, distinct from the components representing a
system’s “older” behavior.

6.1.2.1 Handling quasi-stationary processes

In Section 6.1.1, the concept of parallel models was introduced. Besides solving the
problem of being able to summarize novel observations when a model possesses much
“pre-existing probability mass”, splitting the model into primary and secondary sub-
models also solves a problem related to quasi-stationary processes3. In particular, it
prevents observations that are only slightly-novel with respect to the primary model

1This can be confusing when one considers a process whose observation vectors include time-durations.
The key to understanding the concept here is that a process may depend on relative time differences,
but cannot change its joint pdf (i. e. the “true” components of the GMM) as a function of time.

2See Section 6.1.1 for the distinction between dual-model and single-model DGME.
3A quasi-stationary process can be roughly defined as a process whose behavior changes slow with

respect to the speed at which a model of the process can be updated.
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(M1) from getting immediately absorbed into an existing Gaussian component (and
possibly corrupting / compromising its parameters). Having a secondary model allows
these observations to be “quarantined” for a certain period of time until there’s enough
evidence to decide whether they should indeed be merged into the existing component,
or whether they are more likely to belong to one or more other components.

To illustrate this problem in more detail, see Figure 6.1. In this figure, the upper
plot shows a sequence of one-dimensional observations made over time. If only one
model is used to capture the observed data, the modelled system changes so slowly that
observations continue to get merged into an existing Gaussian. By the time t1 is reached,
the Gaussian represents all of the observed data starting from time t0. This may be
desirable if the observation values will continue to fluctuate between x0 and x1, but if
the observation values have simply made a one-time gradual shift from around x0 to
around x1, then we need a way for the model to “let go” of the observations nearer
to x0, representing only those which are closer to x1. By splitting the model into M1

and M2 as mentioned above, this can be achieved: several components of the model
will be generated, and the relative importance of each component can be adjusted over
time based on the amount of time since it was last seen to support observations (this is
discussed in more detail in the following section on non-stationary processes).

6.1.2.2 Dreaming: synthesizing information from non-stationary processes

It is hypothesized that one function of dreaming is to “connect the dots” between different
observations and memories one has stored in the brain. If this is true, then dreaming may
also serve to enhance new knowledge with old knowledge. For example, one may need to
observe several related events in order to come to a more concrete understanding about a
causal process. However, there is no guarantee that one will observe all of the necessary
events at the same time, or even in close temporal proximity. In fact, it may happen
(for a person) that something which was observed only once several years ago plays a
significant role in forming a hypothesis when combined with present observations. How
does this process work? It is not likely that the person will have the “old” observation(s)
readily available at all times for immediate reasoning about things. Similarly, it is a
common human experience to try to remember someone’s name, or how a particular
event from the past transpired, and at first to not be able to recall this information.
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Figure 6.1: Illustration of component-corruption problem due to quasi-
stationarity of a modelled process: (a) depicts a one dimensional
observation of a quasi-stationary process plotted over time, and (b)
depicts the variance of a Gaussian component (the mean is located
at the center of these variance markers) over time. The component
can end up representing all of the observations, because at any point
in time an observation is only “quasi-novel” with respect to that
component.

After some time, however, the information is usually able to be recalled.

Without making any claims on the actual physical mechanism that takes place within
the human brain when trying to recall information from long ago, DGME can be used to
approximate this human ability. In particular, each Gaussian component in a model can
be given an “age” attribute ∆t, which represents the amount of time elapsed since an
observation was merged into that component (affecting the component’s parameters).
This age is used to compute an effective (unnormalized) weight w̃k of the kth component,
where the weight decays exponentially with a time constant τd:
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w̃i = wie
−∆t/τd (6.1.1)

The τd parameter can be either hand-selected, or learned by observing some “reward”
metric of the model’s effectiveness over time (e. g. in terms of its ability to provide
accurate predictions), and trying to maximize a weighted average of this reward.

By having an effective weight that is based on a component’s “vibrancy”, it is possible to
restrict the “knowledge” (i. e. components of the model) used when making predictions to
only the knowledge supported by more recent observations. This might be akin to when
a person is only able to make use of more recent (or regularly accessed) memories when
consciously reasoning about a situation. When one dreams, however, it may be that one’s
“old” knowledge is fused with recently used and acquired knowledge in order to enhance
or complete it. In the terms of the DGME paradigm, this would be accomplished by
comparing each active (i. e. “recent”) Gaussian with the dormant (i. e. “old”) Gaussians.
If strong correlations are found between any dormant Gaussian and an active Gaussian,
then the dormant Gaussian can be eliminated and merged into the active Gaussian,
altering the active Gaussian’s parameters to reflect the combination of both Gaussians.

The beauty of this paradigm is that despite DGME being an online algorithm, when
effective weights are used it doesn’t need to discard “old” knowledge, and at the same
time it does not require that this “old” knowledge be processed when the model is
“awake” (i. e. in the midst of incorporating new observations into the model). In fact, the
sleep-like “unconscious” process of fusing dormant and active knowledge can be executed
in parallel with the “conscious” process of assimilating new observations into shorter-term
(i. e. active) memory4. Algorithms like SMOOTH (see Algorithm 8) could be adapted for
this purpose.

4This kind of memory is sometimes referred to as “working memory” in the psychology and
neuroscience literature.
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6.2 Extending DGME to Work with Deep
Architectures

Another area worth future exploration related to DGME is the area of “deep archi-
tectures”. The contributions in this dissertation have been restricted to working with
representations that are so-called “shallow architectures”. If a given representational
architecture (e. g. that is used for inference, etc.) is cast in the form of a graph connecting
inputs (conditions) to outputs (predictions), shallow architectures are those for which the
maximum number of edges connecting an input to any output (i. e. the depth) is relatively
low (e. g. less than 4). Bengio (2009) have argued, however, that in comparison with
deep architectures, such architectures require a significantly (i. e. exponentially) higher
number of processing components to represent certain complex processes. Furthermore,
Serre et al. (2007) propose an architecture based on the anatomy of the human cortex
which appears structurally similar to a deep architecture (the proposed architecture has
a depth greater than 8).

Because of the mathematical ease which which GMMs can be used, introducing a hierar-
chical version of the GMM representation and the associated estimation and exploitation
methods presented in this thesis could be a relatively straightforward task. Since the
primary operations one needs to be able to perform on a GMM are conditionalization,
marginalization, and expectation, these operations need to be generalized to a hierarchy
of GMMs, where the “output components” of one GMM link to the “input components”
of a higher-level GMM. Furthermore, the DGME algorithm would need to be expanded
to not only decide between Gaussian creation / merging (for a single level), but also
to decide when a new hierarchical layer is appropriate. This would be one of the more
challenging aspects of extending the work of this thesis to a hierarchical representation.

6.3 Final Remarks

This dissertation has provided a novel and promising method, Dynamic Gaussian
Mixture Estimation, for building density estimates that describe probabilistic systems.
It provides a unique combination of features including the following:
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• the number of mixture components used in the density estimate model are adapted
to fit the process being modelled

• the assumption that prior data can be stored and retrieved is not required – the
method operates in an online manner

• the method can be extended to permit modelling non/quasi-stationary processes

Furthermore, a novel mixture-model based control method Gaussian Mixture Control
has been presented that works hand-in-hand with models estimated via DGME. This
control method fills a gap in the world of control methods, in that it allows some level of
control over systems exhibiting uncertainty and multimodality. Systems that have been
deemed uncontrollable using traditional control methods can be controlled with GMC,
where lower-variance in control output is traded for increased frequency of accurate
control of a process’ state.
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Appendix A

Derivation of Point-to-Gaussian
Merge Equations

By simply substituting µ2 = x and M = 1 into (3.7.6), it is trivial to derive the
point-to-Gaussian merge equation (3.7.16):

µ3 = 1
N + 1(Nµ1 + x) (A.0.1)

Here, µ3 is the new mean that results from merging x into a Gaussian having a mean
µ1, and an unnormalized weight of N (i. e. the number of observations that have already
contributed to the estimate of µ1).

Derivation of the second merge equation, (3.7.17) requires a bit more algebraic manipula-
tion. We begin with (3.7.12):

σ2
3 = 1

N + M − 1
{
(N − 1)σ2

1 + N(µ3 − µ1)2 + (M − 1)σ2
2 + M(µ3 − µ2)2

}

Into this, we again substitute µ2 = x and M = 1, and proceed to derive the result:
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σ2
3 = 1

N + M − 1
{
(N − 1)σ2

1 + N(µ3 − µ1)2 + (M − 1)σ2
2 + M(µ3 − µ2)2

}
(A.0.2)

= 1
N

{
(N − 1)σ2

1 + N(µ3 − µ1)2 + (µ3 − x)2
}

(A.0.3)

Equation (A.0.1) can be substituted into the quantity (µ3 − µ1) as follows:

µ3 − µ1 = 1
N + 1(Nµ1 + x)− µ1 (A.0.4)

= N

N + 1µ1 + 1
N + 1x− N + 1

N + 1µ1 (A.0.5)

= −1
N + 1µ1 + 1

N + 1x (A.0.6)

= 1
N + 1(x− µ1). (A.0.7)

Likewise, for (µ3 − x), we have:

µ3 − x = 1
N + 1(Nµ1 + x)− x (A.0.8)

= N

N + 1µ1 + 1
N + 1x− N + 1

N + 1x (A.0.9)

= N

N + 1µ1 −
N

N + 1x (A.0.10)

= N

N + 1(µ1 − x). (A.0.11)

We can now substitute (A.0.7) and (A.0.11) into (A.0.3), and continue the derivation:
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σ2
3 = 1

N

{
(N − 1)σ2

1 + N(µ3 − µ1)2 + (µ3 − x)2
}

(A.0.12)

= 1
N

{
(N − 1)σ2

1 + N
( 1

N + 1(x− µ1)
)2

+
(

N

N + 1(µ1 − x)
)2}

(A.0.13)

= N − 1
N

σ2
1 +

( 1
N + 1(x− µ1)

)2
+ 1

N

(
N

N + 1(µ1 − x)
)2

(A.0.14)

= N − 1
N

σ2
1 +

( 1
N + 1

)2
(x− µ1)2  

=(µ1−x)2

+N
( 1

N + 1

)2
(µ1 − x)2 (A.0.15)

= N − 1
N

σ2
1 + (N + 1)

( 1
N + 1

)2
(µ1 − x)2 (A.0.16)

= N − 1
N

σ2
1 +

( 1
N + 1

)
(µ1 − x)2 (A.0.17)

This derivation method is also valid for the multidimensional case, where the same
trick can be used to go from (A.0.15) to (A.0.16), because the inner product matrix
(x− µ1)(x− µ1)T will be the same as (µ1 − x)(µ1 − x)T .
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Rotation Invariance of Mahalanobis
Distance

Introduction

The Mahalanobis distance is the multidimensional generalization of the 1D standard-score
z = (x− µ)/σ. In contrast to the standard-score, with the Mahalanobis distance, x and
µ are multidimensional (column vectors). The intuition behind the Mahalanobis distance
is that the Euclidean distance between x and µ is scaled in each dimension according to
the values of a positive definite matrix Σ, which can be thought of in terms of eigenvalues
and eigenvectors as a set of σ values, one for each eigenvector. Each component of x− µ

is scaled according to how much it projects onto each of the eigenvectors.

Claim and Demonstration

The intent of the following is to show one thing: that the Mahalanobis distance of a point
with respect to a covariance matrix is the same, regardless of whether the coordinate
system of the data-points has undergone a unitary transformation (e. g. rotation, reflection,
etc.).

The Mahalanobis distance from a point x to a Gaussian g ∼ N(µ, Σ) is defined as:
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dM(Σ, r1) =
√

r1T Σ−1r1 (B.0.1)

where r1 = x− µ.

Furthermore, “rotating” (i. e. transforming) a covariance matrix Σ involves the following
steps:

1. Perform the eigendecomposition Σ = QΛQ−1, where Q is a matrix containing
column-eigenvectors, and Λ is a diagonal matrix whose Λ(i,i) element is the eigen-
value corresponding to the eigenvector Q(·,i).

2. Transform each eigenvector in Q according to some unitary transform (i. e. “ro-
tation”) matrix T. This results in a new set of (rotated) column basis-vectors
Q2 = TQ

3. The new (transformed) covariance matrix is given by Σ2 = Q2ΛQ2
−1

Now, if we also transform r1 using T: r2 = T r1, and calculate the Mahalanobis
distance

dM(Σ2, r2),

we find that this is identical to the value calculated in (B.0.1). A few 2D examples
demonstrating this are shown in Figure B.1.

Proof of Rotation Invariance. To prove the equivalence of the rotated Mahalanobis dis-
tance dM2 and the original distance dM1, it is sufficient to show that

M2 = d2
M2 = d2

M1 = M1

for any unitary linear transformation (e. g. rotations), since the Mahalanobis distance is
always nonnegative.

Let us define Q2 = RQ1, and r2 = Rr1. We write the untransformed squared Maha-
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Figure B.1: Point to Gaussian distance examples. Distances (d) are Mahalanobis
distances. Ellipses are drawn such that they contain 75% of the
probability mass. The query point is indicated by the larger blue
dot.

lanobis distance as:

M1 = rT
1 Σ−1

1 r1

= rT
1 Q1Λ−1Q−1

1 r1,

where r1 = µ1 − x1, and proceed to show that the transformed squared Mahalanobis
distance (M2) is equivalent:

119



APPENDIX B. ROTATION INVARIANCE OF MAHALANOBIS DISTANCE

M2 = rT
2 Σ−1

2 r2

= rT
2 {Q2Λ−1Q−1

2 }r2

= (Rr1)T{(RQ1)Λ−1(RQ1)−1}(Rr1)
= rT

1 RT RQ1Λ−1Q−1
1 R−1Rr1

= rT
1 IQ1Λ−1Q−1

1 Ir1 because R is unitary
= rT

1 Q1Λ−1Q−1
1 r1

= rT
1 Σ−1

1 r1 = M1

Thus,
dM1 = dM2.

Therefore, the Mahalanobis distance is invariant to unitary1 linear coordinate
system transformations.

1Orthogonal transformations are a subset of unitary transformations, which are restricted to having
real numbers. Rotation matrices belong to the set of orthogonal matrices.
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Appendix C

Source Code

The Dynamic Gaussian Mixture Estimation (DGME) and Gaussian Mixture Regression
(GMR) methods have been incorporated into a fork of the scikit-learn machine-learning
library (Pedregosa et al., 2011). This source code can be acquired at the following
URL: https://github.com/edgimar/scikit-learn
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