Microbe-host associations as drivers of benthic carbon and nitrogen cycling in a changing Mediterranean Sea
File | Description | Size | Format | |
---|---|---|---|---|
Thesis_Johanna_Berlinghof_Microbe-host associations as drivers of benthic carbon and nitrogen cycling in a changing Mediterranean Sea_PDFA.pdf | 49.13 MB | Adobe PDF | View/Open |
Authors: | Berlinghof, Johanna ![]() |
Supervisor: | Wild, Christian ![]() Cardini, Ulisse |
1. Expert: | Wild, Christian ![]() |
Experts: | Meunier, Cedric Leo ![]() |
Abstract: | Seagrasses, such as the endemic Mediterranean species Posidonia oceanica, are critical components of coastal marine ecosystems, providing essential ecosystem services, including carbon sequestration, nutrient cycling, and habitat formation. P. oceanica forms extensive meadows that serve as biodiversity hotspots and play a crucial role in mitigating climate change through long-term carbon storage. Despite their ecological significance, the interactions between P. oceanica and associated organisms, as well as their combined contributions to biogeochemical cycling, remain poorly understood, particularly under changing environmental conditions. This thesis explores the carbon and nitrogen cycling processes within the P. oceanica holobiont, focusing on the epiphytic and microbial communities, microbial driven metabolic processes, and the interaction between P. oceanica and larger associated invertebrates, such as the sponge Chondrilla nucula. Through field and laboratory experiments, this work demonstrates the significant role of epiphytic algae in the primary production of the seagrass holobiont, contributing a substantial portion of net primary production. Nitrogen cycling processes such as N₂ fixation, nitrification, and denitrification in the seagrass phyllosphere were quantified, revealing their importance in meeting the N demands of the seagrass holobiont, especially under natural ocean acidification conditions. Experiments near marine CO₂ vents indicated that ocean acidification accelerates net primary production and nitrogen cycling, while the structure of the microbial community associated with P. oceanica leaves remains largely stable. The facultative mutualism between P. oceanica and the sponge C. nucula further highlights the complexity of the seagrass holobiont. P. oceanica releases dissolved organic carbon, which meets a portion of the sponge's respiratory carbon demand. Conversely, C. nucula releases dissolved inorganic nitrogen, including ammonium and nitrate generated by microbial nitrification, which supports seagrass growth. Stable isotope analysis suggests that the association facilitates nutrient exchange, with P. oceanica preferentially absorbing sponge-derived ammonium, while epiphytes may benefit from sponge-produced nitrate. This dynamic reduces seasonal fluctuations in productivity, stabilizing the seagrass ecosystem during periods of senescence. Sponge-associated nitrification contributes to the nitrogen budget of the seagrass holobiont, potentially reducing nutrient limitations in oligotrophic Mediterranean waters. The microbiome of C. nucula plays a key role in these processes, harboring nitrifiers that mediate the production of nitrate. High-throughput sequencing revealed taxonomic diversity among microbes associated with both the sponge and seagrass, including microorganisms involved in carbon and nitrogen cycling processes. These microbial communities not only mediate nutrient exchange within the seagrass-sponge association but also contribute to the overall resilience and productivity of the ecosystem. This thesis highlights the intricate interactions within the P. oceanica holobiont and its nested ecosystem with C. nucula. These findings underscore the importance of microbial and epiphytic communities in maintaining the resilience and productivity of seagrass meadows, particularly in nutrient-poor environments like the Mediterranean Sea. This research enhances our understanding of the biogeochemical processes that support seagrass ecosystem stability and provides valuable insights to guide conservation efforts in the face of climate change and anthropogenic pressures. |
Keywords: | marine ecology; microbiology; seagrass; Nitrogen cycling | Issue Date: | 28-Feb-2025 | Type: | Dissertation | DOI: | 10.26092/elib/3756 | URN: | urn:nbn:de:gbv:46-elib88756 | Research data link: | https://github.com/luismmontilla/embrace https://doi.org/10.5281/zenodo.8047180 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA824287 |
Institution: | Universität Bremen | Faculty: | Fachbereich 02: Biologie/Chemie (FB 02) |
Appears in Collections: | Dissertationen |
This item is licensed under a Creative Commons License