Permutation Predictions for Non-Clairvoyant Scheduling
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Lindermayr_Megow_Permutation Predictions for Non-Clairvoyant Scheduling_2022_accepted-version.pdf | 2.14 MB | Adobe PDF | Anzeigen |
Autor/Autorin: | Lindermayr, Alexander Megow, Nicole |
Zusammenfassung: | In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements with the objective to minimize the total (weighted) completion time. We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in online algorithm design. While previous works used predictions on processing requirements, we propose a new prediction model, which provides a relative order of jobs which could be seen as predicting algorithmic actions rather than parts of the unknown input. We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees and that they are learnable in both, theory and practice. We generalize the algorithmic framework proposed in the seminal paper by Kumar et al. (NeurIPS'18) and present the first learning-augmented scheduling results for weighted jobs and unrelated machines. We demonstrate in empirical experiments the practicability and superior performance compared to the previously suggested single-machine algorithms. |
Schlagwort: | Non-clairvoyant; Unrelated machines; Competitive ratio; Predictions; Learning-augmented algorithms | Veröffentlichungsdatum: | 11-Jul-2022 | Verlag: | Association for Computing Machinery | Projekt: | TRR 89 Invasive Computing | Sponsor / Fördernde Einrichtung: | Deutsche Forschungsgemeinschaft | Projektnummer: | 146371743 | Zeitschrift/Sammelwerk: | Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '22) | Startseite: | 357 | Endseite: | 368 | Dokumenttyp: | Artikel/Aufsatz | ISBN: | 9781450391467 | Zweitveröffentlichung: | yes | Dokumentversion: | Postprint | DOI: | 10.26092/elib/3188 | URN: | urn:nbn:de:gbv:46-elib81543 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Forschungsdokumente |
Seitenansichten
66
checked on 26.11.2024
Download(s)
48
checked on 26.11.2024
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.