
Zweitveröffentlichung/
Secondary Publication

Staats- und
Universitätsbibliothek
Bremen

Lindermayr, Alexander; Megow, Nicole

Permutation Predictions for Non-Clairvoyant Scheduling

https :// med ia .su u b. u n i-brem en. de

Conference paper as: peer-reviewed accepted version (Postprint)

DOl of this document(secondary publication): https://doi.org/10.26092/elib/3188

Publication date of this document:

for better findability or for reliable citation

01/08/2024

Recommended Citation (primary publication/Version of Record) incl. DOI:

Alexander Lindermayr and Nicole Megow. 2022. Permutation Predictians for Nan-Clairvoyant Scheduling. In
Proceedings of the 34th ACM Symposium an Parallelism in Algorithms and Architectures (SPAA '22). Association
for Computing Machinery, New York, NY, USA, 357-368. https://doi.0rg/10.1145/3490148.3538579.

Please note that the version of this document may differ from the final published version (Version of Record/primary
publication) in terms of copy-editing, pagination, publication date and DDI. Please cite the version that you actually used.
Before citing, you are also advised to check the publisher's website for any subsequent corrections or retractions
(see also https://retractionwatch.com/).

@ Authors I ACM 2022. This is the author's version of the work. lt is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures,
http://doi.org/10.1145/3490148. 35385 79.

This dacument is made available with all rights reserved.

Take down palicy
lf you believe that this document or any material an this site infringes copyright, please contact
publizieren@suub.uni-bremen.de with full details and we will remave access to the material.

Permutation Predictions for Non-Clairvoyant Scheduling
Alexander Lindermayr

University of Bremen
Bremen, Germany

linderal@uni-bremen.de

Nicole Megow
University of Bremen
Bremen, Germany

nicole.megow@uni-bremen.de

ABSTRACT
In non-clairvoyant scheduling, the task is to find an online strategy
for scheduling jobs with a priori unknown processing requirements
with the objective to minimize the total (weighted) completion
time. We revisit this well-studied problem in a recently popular
learning-augmented setting that integrates (untrusted) predictions
in online algorithm design. While previous works used predictions
on processing requirements, we propose a new prediction model,
which provides a relative order of jobs which could be seen as
predicting algorithmic actions rather than parts of the unknown
input. We show that these predictions have desired properties,
admit a natural error measure as well as algorithms with strong
performance guarantees and that they are learnable in both, theory
and practice. We generalize the algorithmic framework proposed
in the seminal paper by Kumar et al. (NeurIPS’18) and present the
first learning-augmented scheduling results for weighted jobs and
unrelated machines. We demonstrate in empirical experiments the
practicability and superior performance compared to the previously
suggested single-machine algorithms.

CCS CONCEPTS
• Theory of computation → Approximation algorithms anal-
ysis; Online algorithms.

KEYWORDS
Scheduling, non-clairvoyant, unrelated machines, competitive ratio,
predictions, learning-augmented algorithms

1 INTRODUCTION
Non-clairvoyant scheduling requires to schedule jobswithout know-
ing their processing requirements a priori. This is a fundamental
problem and has been studied extensively in many variations [15,
28, 29, 34, 46].

We consider non-clairvoyant scheduling with the objective of
minimizing the sum of weighted completion times in different set-
tings. Generally, we are given a set of jobs, each job with individual
weight and unknown processing time, possibly arriving online at its
release date. All jobsmust be scheduled on a single or identical paral-
lel machines; preemption is allowed. Using classical scheduling no-
tation, we refer to the problems we consider as the non-clairvoyant
versions of 1|𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 and P|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 . We also inves-
tigate non-clairvoyant scheduling on unrelated machines, denoted
by R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 , where jobs may have very different pro-
cessing times on each of the machines, but a machine-dependent
processing rate is given. (Precise definitions follow later.)

The performance of online algorithms is typically assessed by
competitive analysis. An online algorithm is 𝜌-competitive if, for all
instances 𝐼 , the algorithmhas costAlg(𝐼) ≤ 𝜌 ·Opt(𝐼), whereOpt(𝐼)
is the objective value of an optimal solution for 𝐼 .

Non-clairvoyant algorithms assign processing rates to jobs and
assume time sharing, that is, parallel processing of jobs with rates
that sum up to at most one per machine and per job. One could
see this as processing each job by a certain amount in every infini-
tesimal time interval. The most prominent strategy is the Round-
Robin (RR) algorithm, which assigns equal rates to all alive jobs and
is 2-competitive for 1|𝑝𝑚𝑡𝑛 |∑𝐶 𝑗 , which is best possible [46]. The
same guarantee is possible using a natural generalization of RR to
weighted jobs [34] and/or to identical machines [15, 46]. Scheduling
on unrelated machines is much harder and requires careful migra-
tion between machines [25]. Nevertheless, it is possible to compute
rates proportional to job properties and machine constraints and
obtain an O(1)-competitive algorithm ([28]; also implicitly in [29]).

The assumption of non-clairvoyance seems too strong for many
applications.While the exact processing timemight be unknown, of-
ten some estimate is available, e.g., extracted information from past
data is commonly used to predict the future. The recently emerg-
ing line of research on learning-augmented algorithms proposes
to design algorithms that have access to additional (possibly erro-
neous) input, called prediction, to achieve an improved performance
if the prediction is accurate while performing not much worse than
algorithms without access to predictions, if the predictions are com-
pletely wrong. Ideally, the performance of a learning-augmented
algorithm is a function of the quality of the prediction for some well
defined error measure. Here, defining an appropriate error measure
is a key task. Given a definition for the prediction error 𝜂 ≥ 0
that quantifies the quality of the prediction, the goal is express the
competitive ratio of the algorithm by a monotone function 𝑓 (𝜂). A
learning-augmented algorithm is called 𝑓 (0)-consistent (in case of
perfect prediction) and 𝛽-robust if 𝑓 (𝜂) ≤ 𝛽 for all possible errors 𝜂.

 1

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Alexander Lindermayr and Nicole Megow

Recent work on non-clairvoyant scheduling with predictions [30,
48, 56] studies the single-machine problem 1|𝑝𝑚𝑡𝑛 |∑𝐶 𝑗 with pre-
dicted processing requirements {𝑦 𝑗 } 𝑗∈ 𝐽 , which we call length pre-
dictions. Commonly, we distinguish two categories of prediction
models: either predict parts of the online input (input-predictions) [8–
10, 40, 48] or algorithmic actions (action-predictions) [4, 11, 36].
Length predictions clearly fall in to the first category.

In their seminal paper [48], Kumar et al. propose an algorithm
that is controlled by a parameter 𝜆 ∈ (0, 1), which can be seen as an
indicator of the algorithm’s trust in the accuracy of the prediction.
Measuring the quality of a prediction {𝑦 𝑗 } 𝑗∈ 𝐽 w.r.t. the actual pro-
cessing requirements {𝑝 𝑗 } 𝑗∈ 𝐽 by the ℓ1 metric (ℓ1 =

∑
𝑗∈ 𝐽 |𝑝 𝑗 −𝑦 𝑗 |),

they prove a competitive ratio of at most (1/(1 − 𝜆)) (1 + 𝑛ℓ1/Opt)
while also maintaining a robustness factor of 2/𝜆. However, the ℓ1-
metric does not seem to distinguish well between “good” and “bad”
predictions, as has been noted recently by Im et al. [30]. They argue
that, intuitively, the linear error measure ℓ1 is incompatible with
the sum of weighted completion time objective and using 𝑛 · ℓ1 as
upper bound may overestimate the “actual” error, substantially.

Im et al. [30] propose a different error measure 𝜈 that satisfies
certain desired properties and is based on the optimal solution of
artificial instances mixing 𝑦 𝑗 and 𝑝 𝑗 . It satisfies ℓ1 ≤ 𝜈 ≤ 𝑛ℓ1. Using
this error, they design a learning-augmented randomized algorithm
with competitive ratio min{1 + 𝜆 + O(1/𝜆3 log(1/𝜆)) · 𝜈/Opt, 2/𝜆},
for sufficiently small 𝜆 > 0, in expectation. Their algorithm is quite
sophisticated, requires large constants to diverge from RR (we give
more details later), and it seems very challenging to generalize it
to scheduling settings with release dates, weights or even hetero-
geneous machines. Further, the error measure 𝜈 is still sensitive
to changes in the predicted job lengths which would not affect an
optimal schedule at all which seems an undesired property.

Our contribution. In this work, we contribute to non-clairvoyant
scheduling with predictions in two ways: (i) we propose a new
prediction model with a new error definition, as an alternative to
length predictions studied so far, and (ii) we revisit the classical
idea of time sharing and develop a general framework for design-
ing learning-augmented scheduling algorithms for more general
settings, beyond the simple single-machine setting.

We propose a novel prediction model for scheduling problems,
which we call permutation prediction model. Intuitively, it provides
a permutation of jobs suggesting a priority order for scheduling. In
a way, this is an action-prediction in contrast to previously studied
input-predictions. The idea is that, instead of predicting job lengths,
we take structural properties of an input instance into account that
an optimal algorithm may exploit. Notice that for minimizing the
sum of weighted completion time, theWeighted Shortest Remain-
ing Processing Time (WSPT) order, i.e., jobs in order of weight over
processing time ratios, has proven to be useful in various settings.
Indeed, for the non-clairvoyant version of 1|𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 , know-
ing the WSPT order of jobs would be sufficient to determine an
optimal schedule [53]. While this knowledge is not sufficient for
optimally scheduling with release dates and/or on multiple ma-
chines, it still admits strategies with good approximations on an
optimal solution [3, 26, 42]. For unrelated machines, we also include
a job-to-machine assignment in the prediction model.

Clearly, a WSPT-based permutation prediction could be derived
from a length prediction. The advantage of our model is that it is
much more compact, captures a crucial structural property of an
optimal solution and makes error measures less vulnerable to small
noise in the prediction compared to the length prediction model.

As a key contribution, we define a new, meaningful error mea-
sure that quantifies the impact of an error in the prediction to
an algorithm’s cost explicitly in terms of the objective function.
It has several desirable properties such as (𝑖) monotonicity and
(𝑖𝑖) Lipschitzness (both highly advertised recently by Im el al. [30]),
(𝑖𝑖𝑖) theoretical learnability of our prediction model with respect
to the error definition, which we show by proving that our predic-
tions are efficiently PAC-learnable in the agnostic sense, as well
as (𝑖𝑣) practical learnability, which we demonstrate in empirical
experiments, showing that our implemented learning algorithm
quickly improves the performance of our scheduling algorithms
and appears superior to previously presented algorithms.

Further, we revisit the algorithmic technique of time sharing
introduced by Kumar et al. [48] in their seminal work on non-
clairvoyant scheduling with predictions. We extend this technique
to a general framework for designing learning-augmented schedul-
ing algorithms allowing for release dates, job weights and unrelated
machines. As a main contribution, we give the first algorithm for
non-clairvoyant scheduling with predictions on unrelated machines
and prove strong performance bounds, smoothly degrading with
prediction quality. More precisely, we show for the permutation
prediction model and two appropriate error definitions 𝜂𝑆 and 𝜂𝑅
that there exists for every 𝜆 ∈ (0, 1) a learning-augmented non-
clairvoyant online algorithm for minimizing the total weighted
completion time on

(i) a single machine, 1|𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 , with a competitive ratio of
at most

min
{

1
1 − 𝜆

(
1 + 𝜂𝑆

Opt

)
,

2
𝜆

}
,

(ii) 𝑚 identical machines with release dates, P|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 ,
with a competitive ratio of at most

min
{

1
1 − 𝜆

(
2 + 𝜂𝑆

𝑚 · Opt

)
,

3
𝜆

}
, and

(iii) unrelated machines with release dates, R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 ,
with a competitive ratio of at most

min
{

1
1 − 𝜆

(
5.8284 + 𝜂𝑅

Opt

)
,

128
𝜆

}
.

Our framework requires a clairvoyant and a non-clairvoyant
algorithm for a given scheduling problem, both of them must sat-
isfy a certain monotonicity property. Then, we design a learning-
augmented variation of the clairvoyant algorithm that admits a
competitive ratio as a function of the error. Intuitively, the errors 𝜂𝑅
and 𝜂𝑆 measure how much an erroneous prediction influences the
objective value compared to an accurate prediction. For a single
and identical machines, we require even less predicted information
(no machine assignment) and the simpler measure 𝜂𝑆 suffices.

While we use non-clairvoyant algorithms as a black box from
the literature, the new contribution lies in proving error-dependent

 2

Permutation Predictions for Non-Clairvoyant Scheduling SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

competitive ratios formonotone clairvoyant algorithms that use pre-
dictions as input. Thismay require designing new algorithms. In par-
ticular, we show a competitive ratio of 3+2

√
2 ≈ 5.8284 for a natural

Greedy algorithm for the clairvoyant problem R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 .
This does not match the recent and best known deterministic bound
of 3 [16], but our algorithm satisfies the desired properties of being
error-sensitive and monotone.

Further related work. There has been significant interest in the
recent framework of learning-augmented online algorithms. Many
problems have been considered, e.g., caching [4, 49, 55], further
scheduling [7, 8, 10, 36, 44, 45, 50, 56], rent-or-buy problems [2, 5,
12, 24, 48, 54, 56], paging [13, 23, 33], graph problems [9, 22, 39, 57],
secretary problems [6, 20], matching [4, 37, 38] and many more.

Non-clairvoyant and clairvoyant online scheduling models have
been studied extensively; see the surveys [47, 51]. Most relevant
for our work are WSPT-based algorithms such as [3, 26, 42].

Paper Organization. In Section 2 we give precise definitions for
the problem, prediction model and error measure. Then, we intro-
duce our algorithmic framework and apply it to concrete scheduling
problems in Section 3. We prove efficient PAC learnability of our
predictions in Section 4 and discuss empirical results in Section 5.

2 PROBLEM AND PREDICTION MODEL
2.1 Problem definition
We consider the problem of scheduling 𝑛 jobs 𝐽 = {1, . . . , 𝑛} =: [𝑛]
preemptively on 𝑚 unrelated machines. Every job 𝑗 ∈ 𝐽 has an
associated weight𝑤 𝑗 and processing requirement 𝑝 𝑗 . Further, for
every machine 𝑖 ∈ [𝑚] there is given a rate ℓ𝑖 𝑗 which is the amount
of processing that job 𝑗 receives if it is processed one time unit on
machine 𝑖 , resulting in a total processing time 𝑝𝑖 𝑗 = ℓ𝑖 𝑗 ·𝑝 𝑗 if job 𝑗 is
scheduled onmachine 𝑖 . Jobs arrive online at their individual release
dates {𝑟 𝑗 } 𝑗∈ 𝐽 . A non-clairvoyant online algorithm has to schedule
jobs 𝐽 on the given machines, but is oblivious to unreleased jobs
and has no information on processing requirements. The objective
is to minimize the weighted sum of completion times

∑
𝑗∈ 𝐽 𝑤 𝑗𝐶 𝑗 ,

where the completion time 𝐶 𝑗 of a job 𝑗 is the first point in time
when it has been processed for 𝑝 𝑗 units. In the standard three-
field notation, this problem is denoted as non-clairvoyant version
of R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 . Note that a non-clairvoyant algorithm is
oblivious to the processing requirement 𝑝 𝑗 but needs access to the
machine rates ℓ𝑖 𝑗 to admit a constant competitive ratio [29]. The
setting where ℓ𝑖 𝑗 = 1 for all jobs 𝑗 and machines 𝑖 is called identical
machine setting, P|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 , and the single machine setting
without release dates is 1|𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 .

2.2 Permutation prediction model
We propose a prediction model that is heavily inspired by the rele-
vance of the WSPT order (jobs ordered by non-increasing densi-
ties 𝜇𝑖 𝑗 = 𝑤 𝑗/𝑝𝑖 𝑗) for scheduling to minimize the total weighted
completion time.

For a scheduling instance with job set [𝑛] and a single or multiple
identical machines, our prediction is a permutation �̂� : [𝑛] → [𝑛]
of all jobs. Given the aforementioned power of the WSPT order, we
call the associated permutation of jobs, 𝜎 , perfect prediction.

On unrelated machines, the job-to-machine assignment crucially
matters. Therefore, we add such an assignment to our prediction. In
this most general model, our prediction is defined as �̂� = {�̂�𝑖 }𝑖∈[𝑚] ,
where �̂�𝑖 is the permutation of jobs assigned to machine 𝑖 , and
every job is assigned to exactly one machine. We denote the ma-
chine to which job 𝑗 is assigned in �̂� by𝑚(�̂�, 𝑗). Given a scheduling
instance without release dates and the optimal job-to-machine allo-
cation, it would be optimal to schedule jobs in WSPT order on each
machine individually. Therefore, we speak of perfect prediction
𝜎 = {𝜎𝑖 }𝑖∈[𝑚] , if 𝜎𝑖 involves exactly those jobs that are scheduled
in an optimal solution on machine 𝑖 and orders them inWSPT order,
for each 𝑖 ∈ [𝑚].

In the permutation prediction model, jobs still arrive online and,
at any time, an algorithm has access only to predictions on jobs that
have been released already. At any release date, the permutation is
updated consistently with the previous permutation. That is, the
prediction model is not allowed to change the relative order of
previously known jobs.

2.3 Prediction error
The prediction error defines a measure for the quality of a predic-
tion. It is a crucial element in the design of learning-augmented
algorithms. Intuitively, the error measure shall quantify the impact
that an erroneous prediction has on an (optimal) scheduling algo-
rithm. It is not unnatural to express the error as |Opt(�̂�) −Opt(𝜎) |,
as has been done in [11, 22, 39], but for more complex scheduling
environments the optimal solution is hard to compute and, more
importantly, this error could be even negligible whereas the impact
of running an optimal algorithm with the wrong prediction could
be significant. The latter is what we want to quantify.

In more detail, our error measure shall capture the change in the
cost that an optimal schedule must face when two jobs 𝑗 and 𝑗 ′ are
inverted in a prediction �̂� with respect to 𝜎 . For example, on a single
machine without release dates, if 𝑗 and its successor 𝑗 ′ in �̂� are
swapped in 𝜎 , the schedule that follows �̂� pays an additional cost
of𝑤 𝑗 ′𝑝 𝑗 but saves𝑤 𝑗𝑝 𝑗 ′ compared to the schedule that follows 𝜎 .
However, in presence of release dates and on multiple machines,
just knowing the orders may not allow us to express the change in
the exact optimal cost. Therefore, we rely on an approximation as
a surrogate for the optimal cost, namely, the change in the sum of
weighted completion times when preemptively scheduling jobs in the
given priority order, �̂� resp. 𝜎 .

We define two different error measures. Firstly, we define our
simple error 𝜂𝑆 for predictions that consist of a single permutation
on all jobs. Then, our general measure 𝜂𝑅 describes the quality
of permutation predictions with predicted job assignments, 𝜎 =

{𝜎𝑖 }𝑖∈[𝑚] . We show that 𝜂𝑆 is special case of 𝜂𝑅 .

Definition 2.1. For an instance of non-clairvoyant scheduling
with permutation prediction �̂� consisting of a single permutation,
and WSPT order 𝜎 , let I(𝐽 , �̂�) = {(𝑗 ′, 𝑗) ∈ 𝐽 2 | 𝜎 (𝑗 ′) < 𝜎 (𝑗) ∧
�̂� (𝑗 ′) > �̂� (𝑗)} be the set of inverted job pairs. The prediction error
of �̂� is defined as

𝜂𝑆 (𝐽 , �̂�) =
∑︁

(𝑗 ′, 𝑗) ∈I (𝐽 ,�̂�)
(𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′) .

 3

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Alexander Lindermayr and Nicole Megow

This error measures the exact change in the objective value, in
the absence of release dates. The single permutation prediction and
this error will be sufficient for designing algorithms with appealing
error-dependency for a single and parallel identical machines.

For scheduling on unrelated machines and predictions including
a job assignment, we need a more elaborate error definition which,
nevertheless, follows the same idea. Given an instance with job
set 𝐽 and prediction �̂� = {�̂�𝑖 }𝑖∈[𝑚] , we define for every job 𝑗 ∈ 𝐽 a
partial error 𝜂 𝑗 , which measures how much the different positions
of 𝑗 in �̂� resp. 𝜎 increases the objective value assuming preemptive
scheduling according to a given permutation.

To this end, we consider for an arbitrary assignment and permu-
tation 𝜋 = {𝜋𝑖 }𝑖∈[𝑚] the schedule that processes at every point in
time 𝑡 on every machine 𝑖 the available job 𝑗 ′ with𝑚(𝜋, 𝑗 ′) = 𝑖 that
has the highest priority in 𝜋𝑖 . Let 𝐴(𝑗) denote the set of jobs that
are released but unfinished by time 𝑟 𝑗 and that are assigned to ma-
chine𝑚(𝜋, 𝑗). Note that 𝑗 ∈ 𝐴(𝑗). For two jobs 𝑗 and 𝑗 ′ with 𝑟 𝑗 = 𝑟 𝑗 ′

and𝑚(𝜋, 𝑗) = 𝑚(𝜋, 𝑗 ′), we assume that they are assigned to the
machine in order of their indices. By denoting the remaining pro-
cessing requirement of job 𝑗 at time 𝑡 by 𝑝 𝑗 (𝑡), and 𝑝𝑖 𝑗 (𝑡) = ℓ𝑖 𝑗𝑝 𝑗 (𝑡),
the increase in the schedule’s objective value for adding job 𝑗 to
machine 𝑖 =𝑚(𝜋, 𝑗) is equal to

𝑊𝑗 (𝐽 , 𝜋) = 𝑝𝑖 𝑗

∑︁
𝑗 ′∈𝐴(𝑗)

𝜋𝑖 (𝑗 ′)>𝜋𝑖 (𝑗)

𝑤 𝑗 ′ +𝑤 𝑗

(
𝑟 𝑗 +

∑︁
𝑗 ′∈𝐴(𝑗)

𝜋𝑖 (𝑗 ′)≤𝜋𝑖 (𝑗)

𝑝𝑖 𝑗 ′ (𝑟 𝑗)
)
.

Definition 2.2. For an instance of non-clairvoyant scheduling
with permutation prediction �̂� = {�̂�𝑖 }𝑖∈[𝑚] and perfect prediction
𝜎 = {𝜎𝑖 }𝑖∈[𝑚] , the prediction error for job 𝑗 ∈ 𝐽 is defined as

𝜂 𝑗 (𝐽 , �̂�) =𝑊𝑗 (𝐽 , �̂�) −𝑊𝑗 (𝐽 , 𝜎) .

The prediction error of �̂� is given by 𝜂𝑅 (𝐽 , �̂�) = ∑
𝑗∈ 𝐽 𝜂 𝑗 (𝐽 , �̂�).

It is not difficult to see that 𝜂𝑅 reduces to the compact error
measure 𝜂𝑆 for predictions that consist of a single permutation
(without machine assignment) and without release dates.

Proposition 2.3. For a job set 𝐽 and a permutation prediction �̂� ,
if �̂� is a single permutation and 𝑟 𝑗 = 0, for all 𝑗 ∈ 𝐽 , then

𝜂𝑅 (𝐽 , �̂�) = 𝜂𝑆 (𝐽 , �̂�).

Proof. Let 𝑗 ∈ 𝐽 . Observe that 𝜂 𝑗 (𝐽 , �̂�) = 𝑊𝑗 (𝐽 , �̂�) −𝑊𝑗 (𝐽 , 𝜎)
equals under the stated assumptions∑︁

𝑗 ′∈ 𝐽
�̂� (𝑗)<�̂� (𝑗 ′)

𝑤 𝑗 ′𝑝 𝑗 +
∑︁
𝑗 ′∈ 𝐽

�̂� (𝑗 ′)<�̂� (𝑗)

𝑤 𝑗𝑝 𝑗 ′

−
∑︁
𝑗 ′∈ 𝐽

𝜎 (𝑗)<𝜎 (𝑗 ′)

𝑤 𝑗 ′𝑝 𝑗 −
∑︁
𝑗 ′∈ 𝐽

𝜎 (𝑗 ′)<𝜎 (𝑗)

𝑤 𝑗𝑝 𝑗 ′ .

Combining the first with the third sum and the second with the
fourth gives∑︁

𝑗 ′∈ 𝐽
𝜎 (𝑗)>𝜎 (𝑗 ′)
�̂� (𝑗)<�̂� (𝑗 ′)

𝑤 𝑗 ′𝑝 𝑗 −
∑︁
𝑗 ′∈ 𝐽

𝜎 (𝑗 ′)<𝜎 (𝑗)
�̂� (𝑗 ′)>�̂� (𝑗)

𝑤 𝑗𝑝 𝑗 ′ =
∑︁
𝑗 ′∈ 𝐽

𝜎 (𝑗)>𝜎 (𝑗 ′)
�̂� (𝑗)<�̂� (𝑗 ′)

(𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′) .

Summing over all jobs and inversion pairs I yields∑︁
(𝑗 ′, 𝑗) ∈I (𝐽 ,�̂�)

(𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′) = 𝜂𝑆 (𝐽 , �̂�) . □

2.4 Properties of the error measure
Our new error measure satisfies several desired properties such as
(𝑖) monotonicity, (𝑖𝑖) Lipschitzness, (𝑖𝑖𝑖) theoretical learnability,
and (𝑖𝑣) practical learnability.

Im et al. [30] advocate particularly the first two properties.Mono-
tonicity requires, in the length prediction model, that the error
grows as more length predictions become incorrect. In our setting,
we have 𝜂 (�̂�) = 0 if �̂� = 𝜎 , and for any inversion added to �̂� , the
error grows. This is because an inversion (𝑗 ′, 𝑗) ∈ I increases the
error by𝑤 𝑗 ′𝑝 𝑗−𝑤 𝑗𝑝 𝑗 ′ , since𝜎 (𝑗 ′) < 𝜎 (𝑗) implies𝑤 𝑗 ′/𝑝 𝑗 ′ ≥ 𝑤 𝑗/𝑝 𝑗 .
Thus, our definition satisfies monotonicity.

Lipschitzness requires the error to bound the absolute difference
of the optimal objective values for the actual and predicted in-
stance from above. Our error definition precisely measures the cost
between a solution that follows �̂� and one that follows 𝜎 , when
scheduling the actual instance preemptively according to the given
order. Hence, our error measures immediately satisfy Lipschitzness
for our prediction setup.

Our prediction model is theoretically learnable in the framework
of PAC-learnability [52]. We show that permutations are efficiently
PAC-learnable in the agnostic sense w.r.t. our error definition (Sec-
tion 4). While this theoretic result gives a rather large bound on
the required number of samples to get a low prediction error, we
further demonstrate that our predictions are learnable and useful in
practice. We implement a learning algorithm and show that even
a small number of seen samples results in a drastic performance
improvement of our algorithm in practical instances (Section 5).

In general, it is difficult to compare different prediction and error
models. However, we can convert a given length prediction into a
permutation prediction by simply computing theWSPT order based
on the predicted processing requirements. For the case of unrelated
machines, we further require predicted machine assignments. This
conversion allows us to compare our error to the previously pro-
posed measures 𝜈 and ℓ1 for the case of 1|𝑝𝑚𝑡𝑛 |∑𝐶 𝑗 .

Firstly, we note that our error 𝜂𝑆 is less vulnerable than 𝜈 and ℓ1
to changes in the predicted instancewhich do not affect the structure
of an optimal solution. Indeed, the optimal solution of an instance
with 𝑝 𝑗 = 𝑗 for all 𝑗 ∈ [𝑛] has the same structure as the optimal
solution of a predicted instance with 𝑦 𝑗 = 𝑗 − 1 for all 𝑗 ∈ [𝑛].
One would expect a small error, and indeed 𝜂𝑆 = 0. In contrast,
previously defined errors are large: 𝜈 = Opt({max{𝑝 𝑗 , 𝑦 𝑗 }}) −
Opt({min{𝑝 𝑗 , 𝑦 𝑗 }}) = 𝑛(𝑛 + 1)/2 − (𝑛 − 1)𝑛/2 = 𝑛 and ℓ1 =∑

𝑗∈ 𝐽 |𝑝 𝑗 − 𝑦 𝑗 | = 𝑛. This shows that our prediction and error seem
to capture well the relevant characteristics of an input-prediction
in terms of derived actions, while 𝜈 and ℓ1 also track insignificant
numerical differences between the actual and predicted instances.

In contrast to this example, there are other instances where 𝜈
and ℓ1 underestimate the actual difficulty that is caused by the
inaccuracy of the prediction given to an (optimal) algorithm. Im et
al. [30] give such an example with 𝑝1 = 𝑦1 = . . . = 𝑝𝑛−1 = 𝑦𝑛−1 = 1
and 𝑝𝑛 = 𝑛2 but 𝑦𝑛 = 0. While the structural difference of the

 4

Permutation Predictions for Non-Clairvoyant Scheduling SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

optimal solutions for predicted and true values is large (𝜂𝑆 = Ω(𝑛3))
the other error definitions only measure 𝜈 = 𝑛2 + 𝑛 and ℓ1 = 𝑛2.

It is not difficult to see that our prediction error never exceeds𝑛ℓ1.

Proposition 2.4. For any instance of 1|𝑝𝑚𝑡𝑛 |∑𝐶 𝑗 and length
prediction, 𝜂𝑆 ≤ 𝑛 · ℓ1.

Proof. Consider an instance with job set 𝐽 and length predic-
tion {𝑦 𝑗 } 𝑗∈[𝑛] . Let �̂� be the corresponding predicted permutation.
Since (𝑗 ′, 𝑗) ∈ I(𝐽 , �̂�) implies �̂� (𝑗 ′) > �̂� (𝑗), which must be due
to 𝑦 𝑗 ≤ 𝑦 𝑗 ′ , we conclude

𝜂𝑆 (𝐽 , �̂�) =
∑︁

(𝑗 ′, 𝑗) ∈I (𝐽 ,�̂�)
𝑝 𝑗 − 𝑦 𝑗 + 𝑦 𝑗 − 𝑦 𝑗 ′ + 𝑦 𝑗 ′ − 𝑝 𝑗 ′

≤
∑︁

(𝑗 ′, 𝑗) ∈I (𝐽 ,�̂�)
|𝑝 𝑗 − 𝑦 𝑗 | + |𝑝 𝑗 ′ − 𝑦 𝑗 ′ | ≤ 𝑛ℓ1 . □

Our results for non-uniform job weights on a single and iden-
tical machines translate to the length prediction model, as one
can similarly show that 𝜂𝑆 is bounded by the natural weighted
generalization of 𝑛 · ℓ1, that is

∑
𝑗 ′∈ 𝐽 𝑤 𝑗 ′

∑
𝑗∈ 𝐽 |𝑝 𝑗 − 𝑦 𝑗 |.

3 PREFERENTIAL TIME SHARING
Wedescribe a framework for designing algorithms for non-clairvoyant
scheduling with untrusted predictions, which we apply to several
concrete scheduling settings in the following subsections.

In their seminal paper, Kumar et al. [48] proposed a single-
machine time sharing algorithm for executing two algorithms ‘in
parallel’, a clairvoyant (assuming predicted processing times to be
correct) and a non-clairvoyant algorithm. The rate, at which each
of these algorithms is executed, is determined by the confidence
parameter 𝜆 ∈ (0, 1). We extend this idea to a general framework
for scheduling jobs with non-uniform weights and arbitrary release
dates on unrelated machines.

This technique requires that both algorithms are monotone [48].

Definition 3.1. A scheduling algorithm is monotone, if for two
instances with identical inputs but actual job processing require-
ments {𝑝1, . . . , 𝑝𝑛} and {𝑝′1, . . . , 𝑝

′
𝑛} such that 𝑝 𝑗 ≤ 𝑝′

𝑗
for all 𝑗 ∈

[𝑛], the objective value of the algorithm for the first instance is at
most its objective value for the second one.

Given two monotone algorithms A and B and a confidence
parameter 𝜆 ∈ (0, 1), we define a new preemptive algorithm: we
run on all machines and for every infinitesimal time interval, algo-
rithmA in the first (1−𝜆)-fraction of the interval and algorithm B
in the remaining 𝜆-fraction of the interval. The new algorithm hides
arrived jobs until they are released in the simulated, i.e., slowed
down, schedule of A resp. B. The following result generalizes a
single-machine version without weights and release dates [48].

Lemma 3.2. Given a parameter 𝜆 ∈ (0, 1) and two monotonic
algorithms with competitive ratios 𝜌A and 𝜌B for the online prob-
lem R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑗 𝑤 𝑗𝐶 𝑗 , there exists an algorithm for the same prob-
lem with a competitive ratio min

{ 𝜌A
1−𝜆 ,

𝜌B
𝜆

}
.

Proof. Assume that the competitive ratios of A and B are at
most 𝜌A and 𝜌B . By monotonicity of both algorithms, whenever
one algorithm processes a job, the other one will not have a higher
objective value due to shorter processing requirements. Since we

execute A for a (1 − 𝜆)-fraction of time and B for a 𝜆-fraction of
time, the weighted completion time of a job increases by a factor of
at most 1/(1−𝜆) resp. 1/𝜆 compared to the schedules ofA resp. B,
which implies the competitive ratio of the new algorithm. □

Our Preferential Time Sharing framework crucially builds on
Lemma 3.2 and takes as input two monotone algorithms, a clair-
voyant algorithm A𝐶 with a competitive ratio of at most 𝜌𝐶 and
a non-clairvoyant algorithm A𝑁 with a competitive ratio of at
most 𝜌𝑁 . Intuitively, the non-clairvoyant algorithm will ensure
robustness, while the clairvoyant algorithm, being executed based
on the given predictions, gives a good consistency. As A𝐶 will
have access to predictions while being oblivious of true processing
requirements, we call it prediction-clairvoyant. Our framework then
gives, using Lemma 3.2 withA = A𝐶 and B = A𝑁 , a time sharing
algorithm with consistency 𝜌𝐶/(1 − 𝜆) and robustness 𝜌𝑁 /𝜆.

When aiming for error-sensitive guarantees, we require an error-
dependent performance guarantee for A𝐶 .

Definition 3.3. A prediction-clairvoyant algorithm is 𝜂-error-
dependent for an error measure 𝜂 if its objective value is bounded
by 𝜌𝐶 · Opt(𝐽) + 𝜂 (𝐽 , �̂�) for any instance 𝐽 and prediction �̂� .

We note that these definitions are independent of the used pre-
diction model. A straightforward consequence is as follows.

Corollary 3.4. Preferential Time Sharing with a monotone, 𝜂-
error-dependent algorithmA𝐶 with competitive ratio at most 𝜌𝐶 and
a monotone, non-clairvoyant algorithm A𝑁 with competitive ratio
at most 𝜌𝑁 has, for every 𝜆 ∈ (0, 1), a competitive ratio of at most

min
{

1
1 − 𝜆

(
𝜌𝐶 + 𝜂

Opt

)
,
𝜌𝑁

𝜆

}
for non-clairvoyant scheduling with predictions R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 .

In the following subsections, we apply the Preferential Time
Sharing framework to different concrete scheduling problems and
prove our main algorithmic results. This requires:
(i) develop a monotone prediction-clairvoyant algorithm A𝐶

with error-dependent competitive ratio; and
(ii) select an applicable non-clairvoyant monotone algorithm.
By Corollary 3.4, both algorithms combined give the desired perfor-
mance bounds for preemptive scheduling with predictions. While
non-clairvoyant algorithms for our problems are available in the lit-
erature, ourmain contribution lies in designing prediction-clairvoyant
algorithms with provable low error-dependency.

3.1 Single machine
Consider non-clairvoyant scheduling of weighted jobs on a single
machine, 1|𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 .

Prediction-clairvoyant algorithm. It is well-known that schedul-
ing non-preemptively in the order given by �̂� gives the optimal
schedule [53] if �̂� coincides with the WSPT order. We refer to this
algorithm as prediction-clairvoyant WSPT. It is monotone since,
for a fixed prediction, shrinking a job does not affect �̂� and only
results in a lower completion time for this job and all its successors
in �̂� . We now show that it is 𝜂𝑆 -error-dependent.

 5

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Alexander Lindermayr and Nicole Megow

Lemma 3.5. The prediction-clairvoyant WSPT algorithm is 𝜂𝑆 -
error-dependent.

Proof. Consider an instance 𝐽 with jobs being indexed by 𝜎 , a
prediction �̂� , and the schedule obtained by the prediction-clairvoyant
WSPT algorithm. In this schedule, let 𝑑 (𝑗 ′, 𝑗) denote the amount of
job 𝑗 ′ that has been processed before job 𝑗 completed. Thus,𝑑 (𝑗 ′, 𝑗) =
𝑝 𝑗 ′ if and only if �̂� (𝑗 ′) < �̂� (𝑗). This implies

Alg(𝐽 , �̂�) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝑝 𝑗 +
𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

(
𝑤 𝑗 · 𝑑 (𝑗 ′, 𝑗) +𝑤 𝑗 ′ · 𝑑 (𝑗, 𝑗 ′)

)
=

𝑛∑︁
𝑗=1

𝑤 𝑗𝑝 𝑗 +
𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

�̂� (𝑗 ′)<�̂� (𝑗)

𝑤 𝑗𝑝 𝑗 ′ +
𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

�̂� (𝑗 ′)>�̂� (𝑗)

𝑤 𝑗 ′𝑝 𝑗

=

𝑛∑︁
𝑗=1

𝑤 𝑗

𝑗∑︁
𝑗 ′=1

𝑝 𝑗 ′ +
𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

�̂� (𝑗 ′)>�̂� (𝑗)

(𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′)

= Opt(𝐽) + 𝜂𝑆 (𝐽 , �̂�) .
The last equation holds since the first sum equals the objec-

tive value of the true WSPT schedule, i.e., a schedule according
to 𝜎 , which is optimal and the second sum equals 𝜂𝑆 (𝐽 , �̂�) by Defini-
tion 2.1, since we assumed the jobs to be indexed according to 𝜎 . □

Non-clairvoyant algorithm. The Weighted Round Robin (WRR)
algorithm distributes processing rates across all alive jobs propor-
tional to their weights. Motwani et al. [46] showed that the algo-
rithm has a competitive ratio of 2 for jobs with uniformweights, and
Kim and Chwa [34] proved the same competitive ratio for arbitrary
weights. In both cases, this ratio is best possible. It is not difficult
to see that WRR is monotone, since shrinking a job’s processing
requirement only decreases its completion time and thus gives all
other jobs more rate earlier, also reducing their completion time.

By Corollary 3.4 we conclude with the following result.

Theorem 3.6. Preferential Time Sharingwith the prediction-clairvoyant
WSPT algorithm and the non-clairvoyant WRR algorithm has, for
every 𝜆 ∈ (0, 1), a competitive ratio of at most

min
{

1
1 − 𝜆

(
1 + 𝜂𝑆

Opt

)
,

2
𝜆

}
for non-clairvoyant scheduling with predictions 1|𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 .

3.2 Identical parallel machines
Consider non-clairvoyant scheduling of weighted jobs with release
dates on𝑚 identical parallel machines, P|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 . As pre-
diction we assume a single permutation �̂� over all jobs, i.e., we do
not require a machine assignment.

Prediction-clairvoyant algorithm. Consider the preemptive WSPT
(P-WSPT) algorithm that schedules, at any moment in time, the𝑚
available jobs with the highest priority in the predicted order �̂� .
Assuming �̂� is a perfect prediction and gives the true WSPT order,
P-WSPT is known to be 2-competitive [42]. Further notice that, for
a fixed permutation prediction, smaller processing requirements
will not increase the objective value of this algorithm. Thus, it is
monotone. We show the following error-dependence.

Lemma 3.7. The prediction-clairvoyant P-WSPT algorithm is (𝜂𝑆/𝑚)-
error-dependent.

Proof. Consider an instance 𝐽 with jobs being indexed by 𝜎 , a
prediction �̂� , and the schedule obtained by the prediction-clairvoyant
P-WSPT. After job 𝑗 has been released, it is either being processed
on a machine or it is delayed by another job. Let 𝑑 (𝑗 ′, 𝑗) denote
the total amount of job 𝑗 ′ that delays the completion of 𝑗 . Note
that 𝑑 (𝑗 ′, 𝑗) ≤ 𝑝 𝑗 ′ . Such a delay can only occur if there are at
least𝑚 alive jobs before 𝑗 in �̂� , and these jobs will be distributed
over all𝑚 machines. Since 𝑗 has received 𝑝 𝑗 units of processing by
its completion time, we conclude

Alg(𝐽 , �̂�)

≤
𝑛∑︁
𝑗=1

𝑤 𝑗 (𝑟 𝑗 + 𝑝 𝑗) +
1
𝑚

𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

(
𝑤 𝑗 · 𝑑 (𝑗 ′, 𝑗) +𝑤 𝑗 ′ · 𝑑 (𝑗, 𝑗 ′)

)
≤ Opt(𝐽) + 1

𝑚

𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

�̂� (𝑗 ′)<�̂� (𝑗)

𝑤 𝑗𝑝 𝑗 ′ +
1
𝑚

𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

�̂� (𝑗 ′)>�̂� (𝑗)

𝑤 𝑗 ′𝑝 𝑗

= Opt(𝐽) + 1
𝑚

𝑛∑︁
𝑗=1

𝑤 𝑗

𝑗−1∑︁
𝑗 ′=1

𝑝 𝑗 ′ +
1
𝑚

𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

�̂� (𝑗 ′)>�̂� (𝑗)

(𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′)

≤ 2 · Opt(𝐽) + 1
𝑚

· 𝜂𝑆 (𝐽 , �̂�).

The second and third inequality hold due to two classical lower
bounds on an optimal solution: Every job has to be processed by at
least its 𝑝 𝑗 after its release in any solution. And 1

𝑚

∑𝑛
𝑗=1𝑤 𝑗

∑𝑗−1
𝑗 ′=1 𝑝 𝑗 ′

equals the objective value of theWSPT schedule on a singlemachine
with speed𝑚 without release dates, which is a known relaxation
of our problem and therefore also a lower bound on Opt(𝐽). Since
we assumed that the jobs are indexed according to 𝜎 , the sum of
inversions is equal to 𝜂𝑆 (𝐽 , �̂�) by Definition 2.1. □

Non-clairvoyant algorithm. Beaumont et el. [15] analyzed a nat-
ural extension of the WRR algorithm [34] to identical parallel ma-
chines and prove the same competitive ratio of 2 for non-clairvoyant
P|𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 . Like WRR, their algorithm Weighted Dynamic
EQuipartition (WDEQ) assigns processing rates to jobs proportional
to their weights making sure that no job receives a higher rate than
executable on one machine simultaneously.

When release dates are present, it is not hard to prove that
WDEQ has a competitive ratio of at most 3. This result might be
folkloric. To see it, consider the schedules 𝑆 and 𝑆 ′ of WDEQ with
and without release dates for the same job set. Let 𝐶 𝑗 resp. 𝐶′

𝑗
be

the completion time of job 𝑗 in 𝑆 resp. 𝑆 ′. Notice that the total sum
of rates job 𝑗 receives in the interval [𝑟 𝑗 ,𝐶 𝑗] in 𝑆 is not more than
in the interval [0,𝐶′

𝑗
] in 𝑆 ′. This is because the total weight of other

jobs running during [𝑟 𝑗 ,𝐶 𝑗] in 𝑆 cannot be higher compared to the
case when all jobs are released at the same time, which is the case
in 𝑆 ′. Thus, [𝑟 𝑗 ,𝐶 𝑗] is not longer than [0,𝐶′

𝑗
], giving 𝐶 𝑗 ≤ 𝑟 𝑗 +𝐶′

𝑗
.

The facts that
∑

𝑗 𝑤 𝑗𝑟 𝑗 is a lower bound on the optimal objective
value with release dates and

∑
𝑗 𝑤 𝑗𝐶

′
𝑗
is at most twice the optimal

objective value without release dates [15] imply that WDEQ has a
competitive ratio of at most 3 for 𝑃 |𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝐽 .

 6

Permutation Predictions for Non-Clairvoyant Scheduling SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

Note that WDEQ is monotone as shrinking a job only decreases
its completion time and thus gives other jobs more rate earlier,
which also decreases their completion times.

Lemma 3.8. WDEQ is a monotone 3-competitive algorithm for the
non-clairvoyant version of P|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 .

By Corollary 3.4 we conclude with the following result.

Theorem 3.9. Preferential Time Sharingwith the prediction-clairvoyant
P-WSPT algorithm and the non-clairvoyant WDEQ algorithm has,
for every 𝜆 ∈ (0, 1), a competitive ratio of

min
{

1
1 − 𝜆

(
2 + 𝜂𝑆

𝑚 · Opt

)
,

3
𝜆

}
for non-clairvoyant scheduling with predictions on𝑚 identical parallel
machines, P|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 .

3.3 Unrelated machines
We consider our most general non-clairvoyant scheduling prob-
lem, preemptive scheduling of weighted jobs on unrelated ma-
chines R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 , with predictions. Recall that we are
given a predicted permutation �̂�𝑖 for each machine 𝑖 ∈ [𝑚] in-
cluding a predicted machine allocation𝑚(�̂�, 𝑗) for each job 𝑗 .

Prediction-clairvoyant algorithm. The best known algorithm for
clairvoyant scheduling R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 by Bienkowski et al. [16]
has a competitive ratio of 3. It uses a guess-and-double framework
and processing times; it is unclear how to run it based on permuta-
tion predictions and how to track its error-dependence.

Other clairvoyant algorithms where proposed (for different prob-
lems) [3, 26, 32, 43] that use a greedy strategy for assigning jobs to
machines in the following way. Assuming a fixed single-machine
rule Π, they assign a newly arriving job to the machine where
it causes the (approximately) minimum increase in the objective
value, assuming that jobs on each machine are scheduled according
to Π. We refer to such algorithm as MinIncrease Π.

While these algorithms are similar in flavor, none of the existing
results proven in the literature seems to directly match our purpose
w.r.t. the precise scheduling model and the possibility for proving
an error-sensitivity.

Most promising seems a result for minimizing the total weighted
flow time on unrelated machines, where the flow time of a job 𝑗

is defined as 𝐶 𝑗 − 𝑟 𝑗 . Anand et al. [3] use the Weighted Shortest
Remaining Processing Time first (WSRPT) rule as single-machine
algorithm Π, which schedules, at any time 𝑡 , an available job with
largest residual density 𝑤 𝑗/𝑝 𝑗 (𝑡). For the (simpler) objective of
minimizing the weighted completion time, WSRPT is known to
be 2-competitive on a single machine with release dates [41]. A
straightforward adaption of the analysis in [3] shows that MinIn-
creaseWSRPT is 8-competitive for our clairvoyant problem. Amore
careful analysis even proves a competitive ratio of at most 4 [32].
However, it is unclear how to turn this algorithm into a prediction-
clairvoyant algorithm in our setting. While the machine assignment
is given, we do not have information about (remaining) processing
times to apply WSRPT. Further, it is unclear how to obtain an error-
dependency for our permutation prediction model, as the order of
the jobs given by WSRPT changes when jobs are processed.

Nevertheless, we take inspiration from the analysis, replace
WSRPT by preemptive WSPT and adopt the MinIncrease P-WSPT
algorithm for our framework. We first prove that the clairvoyant
MinIncrease P-WSPT algorithm is at most 5.8284-competitive using
a dual-fitting analysis borrowing different ideas from [3, 26, 32].
Without release dates, our algorithm is essentially the same as the al-
gorithms in [3, 26, 32] and a lower bound of 4 is known [17, 26]. We
also prove an error-dependent competitive ratio for its prediction-
clairvoyant version with release dates.

Theorem 3.10. The MinIncrease P-WSPT algorithm has a compet-
itive ratio of at most 3 + 2

√
2 ≈ 5.8284 for clairvoyant scheduling on

unrelated machines, R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑤 𝑗𝐶 𝑗 .

In the following we denote the MinIncrease P-WSPT algorithm
byA. Fix an instance 𝐽 and let 𝑠 > 1 be a real number that wewill fix
later. We assume w.l.o.g. by scaling the instance that all processing
requirements and release dates in 𝐽 are integer multiples of 𝑠 .

Let 𝑀𝑖 (𝑗) be the set of available jobs that are assigned to ma-
chine 𝑖 at time 𝑟 𝑗 , excluding job 𝑗 . As this definition is ambiguous
if there are two jobs 𝑗 and 𝑗 ′ with 𝑟 𝑗 = 𝑟 𝑗 ′ being assigned to 𝑖 , we
assume that we assign them in the order of their index. By defin-
ing 𝜇𝑖 𝑗 = 𝑤 𝑗/𝑝𝑖 𝑗 , the increase of the objective value of A due to
assigning job 𝑗 to machine 𝑖 at time 𝑟 𝑗 equals

𝑄𝑖 𝑗 = 𝑤 𝑗

(
𝑟 𝑗 + 𝑝𝑖 𝑗 +

∑︁
𝑗 ′∈𝑀𝑖 (𝑗)
𝜇𝑖 𝑗 ′ ≥𝜇𝑖 𝑗

𝑝𝑖 𝑗 ′ (𝑟 𝑗)
)
+ 𝑝𝑖 𝑗

∑︁
𝑗 ′∈𝑀𝑖 (𝑗)
𝜇𝑖 𝑗 ′<𝜇𝑖 𝑗

𝑤 𝑗 ′ .

Then, algorithmA assigns job 𝑗 to machine 𝑔(𝑗) = arg min𝑖 𝑄𝑖 𝑗 .
The following linear program is a relaxation of our scheduling

problem [3, 26, 32]. The variable 𝑥𝑖 𝑗𝑡 denotes the fractional assign-
ment of job 𝑗 to machine 𝑖 at time 𝑡 .

min
∑︁
𝑖, 𝑗,𝑡

𝑤 𝑗 ·
(
𝑥𝑖 𝑗𝑡

2
+
𝑥𝑖 𝑗𝑡

𝑝𝑖 𝑗
·
(
𝑡 + 1

2

))
(LP)∑︁

𝑖,𝑡≥𝑟 𝑗

𝑥𝑖 𝑗𝑡

𝑝𝑖 𝑗
≥ 1 ∀𝑗∑︁

𝑗

𝑥𝑖 𝑗𝑡 ≤ 1 ∀𝑖, 𝑡

𝑥𝑖 𝑗𝑡 ≥ 0 ∀𝑖, 𝑗, 𝑡
𝑥𝑖 𝑗𝑡 = 0 ∀𝑖, 𝑗, 𝑡 < 𝑟 𝑗

The dual of (LP) is equal to the following linear program with
variables 𝑎 𝑗 and 𝑏𝑖𝑡 .

max
∑︁
𝑗

𝑎 𝑗 −
∑︁
𝑖,𝑡

𝑏𝑖𝑡 (DLP)

𝑎 𝑗

𝑝𝑖 𝑗
≤ 𝑏𝑖𝑡 +𝑤 𝑗 ·

(
𝑡 + 1/2
𝑝𝑖 𝑗

+ 1
2

)
∀𝑖, 𝑗, 𝑡 ≥ 𝑟 𝑗 (1)

𝑎 𝑗 , 𝑏𝑖𝑡 ≥ 0 ∀𝑖, 𝑗, 𝑡

We define a solution of (DLP) for instance 𝐽 which depends on
the schedule produced by algorithm A for 𝐽 . Let 𝑈𝑖 (𝑡) = { 𝑗 ∈
𝐽 | 𝑔(𝑗) = 𝑖 ∧ 𝑡 < 𝐶 𝑗 }, where 𝐶 𝑗 denotes the completion time of
job 𝑗 in the schedule of A for instance 𝐽 . Note that𝑈𝑖 (𝑡) includes
unreleased jobs. Consider the following assignment:

• 𝑎 𝑗 = 𝑄𝑔 (𝑗) 𝑗 for every job 𝑗 and

 7

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Alexander Lindermayr and Nicole Megow

• 𝑏𝑖𝑡 =
∑

𝑗∈𝑈𝑖 (𝑠 ·𝑡) 𝑤 𝑗 for every machine 𝑖 and time 𝑡 .

We first show that the objective value of (DLP) for the solu-
tion (𝑎 𝑗 , 𝑏𝑖𝑡) is close to the objective value of A w.r.t. 𝑠 .

Lemma 3.11.
∑

𝑗 𝑎 𝑗 −
∑
𝑖,𝑡 𝑏𝑖𝑡 =

(
1 − 1

𝑠

)
· A(𝐽).

Proof. The definition of 𝑄𝑔 (𝑗) 𝑗 implies
∑

𝑗 𝑎 𝑗 =
∑

𝑗 𝑄𝑔 (𝑗) 𝑗 =

A(𝐽). Since we assumed that all release dates and processing
times in 𝐽 are integer multiples of 𝑠 , all preemptions occur at in-
teger multiples of 𝑠 and therefore also all job completions. Thus,∑
𝑡

∑
𝑗∈𝑈𝑖 (𝑠 ·𝑡) 𝑤 𝑗 =

1
𝑠

∑
𝑡

∑
𝑗∈𝑈𝑖 (𝑡) 𝑤 𝑗 for every machine 𝑖 , and∑︁

𝑖,𝑡

𝑏𝑖𝑡 =
∑︁
𝑖,𝑡

∑︁
𝑗∈𝑈𝑖 (𝑠 ·𝑡)

𝑤 𝑗 =
1
𝑠

∑︁
𝑖,𝑡

∑︁
𝑗∈𝑈𝑖 (𝑡)

𝑤 𝑗 =
1
𝑠
· A(𝐽),

which implies the desired equality. □

Second, we show that scaling the defined variables makes them
feasible for (DLP).

Lemma 3.12. Assigning 𝑎 𝑗 = 𝑎 𝑗/(𝑠 +1) and 𝑏𝑖𝑡 = 𝑏𝑖𝑡/(𝑠 +1) gives
a feasible solution for (DLP).

Proof. Since our defined variables are non-negative by defini-
tion, it suffices to show that this assignment satisfies (1). Fix a job 𝑗 ,
a machine 𝑖 and a time 𝑡 ≥ 𝑟 𝑗 . We assume that no new job arrives
after 𝑗 , since such a job may only increase 𝑏𝑖𝑡 while 𝑎 𝑗 stays un-
changed. Let 𝑗1, . . . , 𝑗𝑧 be the jobs of𝑀𝑖 (𝑗) indexed in WSPT order
by densities 𝜇𝑖 𝑗 = 𝑤 𝑗/𝑝𝑖 𝑗 . Defining

• 𝐻 = { 𝑗 ′ ∈ 𝑀𝑖 (𝑗) : 𝜇𝑖 𝑗 ′ ≥ 𝜇𝑖 𝑗 } = { 𝑗1, . . . , 𝑗𝑟 } and
• 𝐿 = { 𝑗 ′ ∈ 𝑀𝑖 (𝑗) : 𝜇𝑖 𝑗 ′ < 𝜇𝑖 𝑗 } = { 𝑗𝑟+1, . . . , 𝑗𝑧 },

and using 𝑎 𝑗 = 𝑄𝑔 (𝑗) 𝑗 ≤ 𝑄𝑖 𝑗 and 𝑠 + 1 > 2 yields

𝑎 𝑗

𝑝𝑖 𝑗
=

𝑎 𝑗

(𝑠 + 1)𝑝𝑖 𝑗
≤

𝜇𝑖 𝑗

𝑠 + 1
©«𝑟 𝑗 +

∑︁
𝑗 ′∈𝐻

𝑝𝑖 𝑗 ′ (𝑟 𝑗)
ª®¬ +

𝑤 𝑗

2
+

∑︁
𝑗 ′∈𝐿

𝑤 𝑗 ′

𝑠 + 1
.

Thus, asserting (1) reduces to proving

𝜇𝑖 𝑗

𝑠 + 1
©«𝑟 𝑗 +

∑︁
𝑗 ′∈𝐻

𝑝𝑖 𝑗 ′ (𝑟 𝑗)
ª®¬ +

∑︁
𝑗 ′∈𝐿

𝑤 𝑗 ′

𝑠 + 1
≤ 𝜇𝑖 𝑗 𝑡 + 𝑏𝑖𝑡 . (2)

Observe that the total processing time of all jobs in𝑀𝑖 (𝑗) that are
completed before time 𝑠 · 𝑡 is at most 𝑠 · 𝑡 . Further, 𝑟 𝑗 +𝑠 · 𝑡 ≤ (𝑠 +1)𝑡 .
Now consider the case that machine 𝑖 processes a job 𝑗𝑘 at time 𝑠 · 𝑡 .
If 𝑗𝑘 ∈ 𝐻 , using 𝜇𝑖 𝑗 ≤

𝑤𝑗ℓ

𝑝𝑖 𝑗ℓ
≤ 𝑤𝑗ℓ

𝑝𝑖 𝑗ℓ (𝑟 𝑗)
for all 𝑗ℓ ∈ 𝐻 gives

𝜇𝑖 𝑗

𝑠 + 1

(
𝑟 𝑗 +

𝑘−1∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗)
)
+

𝜇𝑖 𝑗

𝑠 + 1

𝑟∑︁
ℓ=𝑘

𝑝𝑖 𝑗ℓ (𝑟 𝑗) +
∑︁
𝑗 ′∈𝐿

𝑤 𝑗 ′

𝑠 + 1

≤ 𝜇𝑖 𝑗 𝑡 +
1

𝑠 + 1

𝑟∑︁
ℓ=𝑘

𝑤 𝑗ℓ +
∑︁
𝑗 ′∈𝐿

𝑤 𝑗 ′

𝑠 + 1
≤ 𝜇𝑖 𝑗 𝑡 +

𝑏𝑖𝑡

𝑠 + 1
= 𝜇𝑖 𝑗 𝑡 + 𝑏𝑖𝑡 .

The last inequality holds since all jobs in𝑀𝑖 (𝑗) that are processed
after job 𝑗𝑘−1 are unfinished at time 𝑠 · 𝑡 and assigned to 𝑖 in A′𝑠
schedule, hence part of𝑈𝑖 (𝑠 · 𝑡). If 𝑗𝑘 ∈ 𝐿, using𝑤 𝑗ℓ < 𝜇𝑖 𝑗 · 𝑝𝑖 𝑗ℓ for

all 𝑗ℓ ∈ 𝐿 implies

𝜇𝑖 𝑗

𝑠 + 1

(
𝑟 𝑗 +

𝑟∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗)
)
+ 1
𝑠 + 1

𝑘−1∑︁
ℓ=𝑟+1

𝑤 𝑗ℓ +
1

𝑠 + 1

𝑧∑︁
ℓ=𝑘

𝑤 𝑗ℓ

≤
𝜇𝑖 𝑗

𝑠 + 1

(
𝑟 𝑗 +

𝑟∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗) +
𝑘−1∑︁
ℓ=𝑟+1

𝑝𝑖 𝑗ℓ

)
+ 1
𝑠 + 1

𝑧∑︁
ℓ=𝑘

𝑤 𝑗ℓ

≤ 𝜇𝑖 𝑗 𝑡 +
1

𝑠 + 1

𝑧∑︁
ℓ=𝑘

𝑤 𝑗ℓ ≤ 𝜇𝑖 𝑗 𝑡 +
𝑏𝑖𝑡

𝑠 + 1
= 𝜇𝑖 𝑗 𝑡 + 𝑏𝑖𝑡 .

If no job is running at time 𝑠 ·𝑡 , we conclude that all jobs in𝑀𝑖 (𝑗)
must already be completed, because algorithm A does not idle
unnecessarily, and we assumed that no job is released after 𝑗 . By
using𝑤 𝑗ℓ < 𝜇𝑖 𝑗 · 𝑝𝑖 𝑗ℓ for all 𝑗ℓ ∈ 𝐿 we assert (2) for this final case

𝜇𝑖 𝑗

𝑠 + 1

(
𝑟 𝑗 +

𝑟∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗)
)
+

𝑧∑︁
ℓ=𝑟+1

𝑤 𝑗ℓ

≤
𝜇𝑖 𝑗

𝑠 + 1

(
𝑟 𝑗 +

𝑟∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗) +
𝑧∑︁

ℓ=𝑟+1
𝑝𝑖 𝑗ℓ

)
≤ 𝜇𝑖 𝑗 𝑡 . □

Proof of Theorem 3.10. Weak duality and Lemma 3.12 imply
that the objective value of (DLP) for the assigned variables is a
lower bound on the optimal objective value. Lemma 3.11 gives

Opt(𝐽) ≥
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑖,𝑡

𝑏𝑖𝑡 =
∑︁
𝑗∈ 𝐽

𝑎 𝑗

𝑠 + 1
−

∑︁
𝑖,𝑡

𝑏𝑖𝑡

𝑠 + 1

=
1

𝑠 + 1
©«
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑖,𝑡

𝑏𝑖𝑡
ª®¬ =

(
1 − 1/𝑠
𝑠 + 1

)
· A(𝐽) .

We conclude that algorithm A has a competitive ratio of at
most 3 + 2

√
2 ≈ 5.8284 for the optimal choice 𝑠 = 1 +

√
2. □

Wenow consider the prediction-clairvoyant version of theMinIn-
crease P-WSPT algorithm. It assigns the jobs to machines according
to the predicted assignment {�̂�𝑖 }𝑖∈[𝑚] . At any time and for every
machine 𝑖 it schedules the available job with highest priority ac-
cording to �̂�𝑖 . This algorithm is monotone, because shrinking a
job’s processing requirements does not affect {�̂�𝑖 }𝑖∈[𝑚] and thus
may only decrease the completion time of jobs that are scheduled
after this job on the assigned machine.

Lemma 3.13. The prediction-clairvoyant MinIncrease P-WSPT al-
gorithm is 𝜂𝑅-error-dependent.

Proof. Consider job set 𝐽 . Scheduling a job 𝑗 according to a
prediction �̂� contributes a value equal to𝑊𝑗 (𝐽 , �̂�) to the objective
of our algorithm Alg(𝐽 , �̂�). Thus, Alg(𝐽 , �̂�) = ∑

𝑗𝑊𝑗 (𝐽 , �̂�). Since
the machine assignment of the clairvoyant MinIncrease P-WSPT
algorithm A can be encoded into a prediction that orders the jobs
by WSPT on every machine, the cost of following 𝜎 is a lower
bound on the objective value of A, i.e.

∑
𝑗𝑊𝑗 (𝐽 , 𝜎) ≤ A(𝐽), or

−A(𝐽) ≤ −∑
𝑗𝑊𝑗 (𝐽 , 𝜎). We conclude using Theorem 3.10 that our

 8

Permutation Predictions for Non-Clairvoyant Scheduling SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

algorithm is 𝜂𝑅-error-dependent, since

Alg(𝐽 , �̂�) = A(𝐽) − A(𝐽) +
∑︁
𝑗∈ 𝐽

𝑊𝑗 (𝐽 , �̂�)

≤ A(𝐽) +
∑︁
𝑗

𝑊𝑗 (𝐽 , �̂�) −
∑︁
𝑗∈ 𝐽

𝑊𝑗 (𝐽 , 𝜎)

= A(𝐽) + 𝜂𝑅 (𝐽 , �̂�) ≤ 5.8284 · Opt(𝐽) + 𝜂𝑅 (𝐽 , �̂�). □

Non-clairvoyant algorithm. Im, Kulkarni andMunagala [28] show
that the Proportional Fairness (PF) algorithm is 128-competitive.
They actually state a smaller competitive ratio of 64 in [28, Theorem
1.2, Page 16] but it seems to miss a factor of 2 as we argue briefly
in Appendix A. A similar argumentation as for WRR and WDEQ
shows that this algorithm is monotone.

Lemma 3.14 ([28], Appendix A). The Proportional Fairness algo-
rithm is 128-competitive for non-clairvoyant scheduling on unrelated
machines, R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑗 𝑤 𝑗𝐶 𝑗 .

By Corollary 3.4 we conclude with the following result.

Theorem 3.15. Preferential Time Sharing with the prediction-
clairvoyant MinIncrease P-WSPT algorithm and the non-clairvoyant
Proportional Fairness algorithm has, for every 𝜆 ∈ (0, 1), a competitive
ratio of at most

min
{

1
1 − 𝜆

(
5.8284 + 𝜂𝑅

Opt

)
,

128
𝜆

}
for non-clairvoyant scheduling with predictions on unrelated ma-
chines, R|𝑟 𝑗 , 𝑝𝑚𝑡𝑛 |∑𝑗 𝑤 𝑗𝐶 𝑗 .

4 LEARNABILITY OF PERMUTATIONS
We show that permutation predictions for identical machines are
PAC-learnable in the agnostic sense w.r.t. 𝜂𝑆 .

Theorem 4.1. For any 𝜖, 𝛿 ∈ (0, 1) and any distribution D over
the instances of length 𝑛, there exists a learning algorithm which,

given an i.i.d. sample of D of size 𝑧 ∈ O
(

1
𝜖2 · (𝑛 log𝑛 − log𝛿)𝑛2

)
,

returns in polynomial time depending on 𝑛 and 𝑧 a prediction �̂�𝑝 ∈ H
from the set of all possible permutations of the set {1, . . . , 𝑛}, such
that with probability of at least (1 − 𝛿) it holds E𝐽 ∼D [𝜂𝑆 (𝐽 , �̂�𝑝)] ≤
E𝐽 ∼D [𝜂𝑆 (𝐽 , 𝜎)] + 𝜖 , where 𝜂𝑆 (𝐽 , �̂�) denotes the error of �̂� for in-
stance 𝐽 , and 𝜎 = arg min�̂�∈H E𝐽 ∼D [𝜂𝑆 (𝐽 , �̂�)].

Proof. Let 𝜖, 𝛿 ∈ (0, 1). We prove that we can use the classic
Empirical Risk Minimization (ERM) learning method to find such
a prediction. Let S = {𝐽1, . . . , 𝐽𝑧 } be a set of i.i.d. samples from D.
The ERM method then determines the prediction that minimizes
the empirical error 𝜂𝑆S (�̂�) = 1

𝑧

∑𝑧
𝑠=1 𝜂

𝑆 (𝐽𝑠 , �̂�). Since there are 𝑛!
possible permutations of the set {1, . . . , 𝑛}, we conclude that H is
finite, and we can assume by scaling processing requirements and
weights to [0, 1] that our error function is bounded by 𝑛. Classic
results, see e.g. [52], imply for this case that H is agnostically PAC
learnable using the ERM method with sample complexity

𝑧 ≤
⌈

2 log(2|H |/𝛿)𝑛2

𝜖2

⌉
∈ O

(
(𝑛 log𝑛 − log𝛿)𝑛2

𝜖2

)
,

which is polynomial in the number of jobs, 𝑛, as log𝑛! ∈ O(𝑛 log𝑛).

It remains to prove that the ERM algorithm can be implemented
efficiently in our setting, that is, given a sample set of size 𝑧, de-
termine in time polynomial in 𝑛, a prediction that minimizes the
empirical error. Rewriting the empirical error gives

𝜂𝑆S (�̂�) =
1
𝑧

𝑧∑︁
𝑠=1

𝜂𝑆 (𝐽𝑠 , �̂�) =
1
𝑧

𝑧∑︁
𝑠=1

𝑛∑︁
𝑗=1

(
𝑊𝑗 (𝐽𝑠 , �̂�) −𝑊𝑗 (𝐽𝑠 , 𝜎)

)
.

Since the values𝑊𝑗 (𝐽𝑠 , 𝜎) are independent of �̂� , it suffices to
find a prediction �̂� that minimizes 1

𝑧

∑𝑧
𝑠=1

∑𝑛
𝑗=1𝑊𝑗 (𝐽𝑠 , �̂�). For the

special error 𝜂𝑆 , by denoting for a job 𝑗 ∈ 𝐽𝑠 its weight by𝑤
(𝑠)
𝑗

and

its processing requirement by 𝑝 (𝑠)
𝑗

, this is equal to

1
𝑧

𝑧∑︁
𝑠=1

𝑛∑︁
𝑗=1

𝑊𝑗 (𝐽𝑠 , �̂�) =
1
𝑧

𝑧∑︁
𝑠=1

𝑛∑︁
𝑗=1

𝑤
(𝑠)
�̂� (𝑗)

𝑗∑︁
ℓ=1

𝑝
(𝑠)
�̂� (ℓ)

=

𝑛∑︁
𝑗=1

(
1
𝑧

𝑧∑︁
𝑠=1

𝑤
(𝑠)
�̂� (𝑗)

)
𝑗∑︁

ℓ=1

(
1
𝑧

𝑧∑︁
𝑠=1

𝑝
(𝑠)
�̂� (ℓ)

)
.

By defining the average weight �̄��̂� (𝑗) =
1
𝑧

∑𝑧
𝑠=1𝑤

(𝑠)
�̂� (𝑗) and av-

erage processing requirement 𝑝�̂� (𝑗) = 1
𝑧

∑𝑧
𝑠=1 𝑝

(𝑠)
�̂� (𝑗) over S for

all 𝑗 ∈ [𝑛], this is equal to minimizing

𝑛∑︁
𝑗=1

�̄��̂� (𝑗)

𝑗∑︁
ℓ=1

𝑝�̂� (ℓ) .

Consider the average instance ofS, i.e. the scheduling instance of
𝑛 jobswithweights {�̄� 𝑗 } 𝑗∈[𝑛] and processing requirements {𝑝 𝑗 } 𝑗∈[𝑛] .
Since the above expression is equal to the objective value of this
instance when scheduling jobs in order �̂� (1), . . . , �̂� (𝑛), we can min-
imize it by ordering the jobs according to WSPT in polynomial time
in 𝑧 and 𝑛 [53]. □

The space of permutation predictions with predicted machine as-
signments {�̂�𝑖 }𝑖∈[𝑚] is also finite and we can use similar arguments
to prove that they are agnostically PAC-learnable with respect to 𝜂𝑅
with bounded sample complexity. This implies that ERM minimizes
the empirical error. However, it is not clear how to achieve this with
polynomial running time in 𝑛,𝑚 and the number of samples 𝑧. Yet
one can approximately minimize the empirical error by computing
an approximately perfect prediction using the MinIncrease P-WSPT
algorithm on the average instance of S.

5 EXPERIMENTS
In empirical experiments we demonstrate the practicability of our
approach in comparison to the previously proposed learning-augmented
algorithms by Im et al. [30] and Wei and Zhang [56]. These algo-
rithms consider the single-machine problem without weights and
release dates, 1|𝑝𝑚𝑡𝑛 |∑𝐶 𝑗 . Notice that in this setting the Prefer-
ential Time Sharing (PTS) algorithm and the Preferential-Round-
Robin (PRR) algorithm of Kumar et al. [48] are equivalent. The only
difference is the theoretically different prediction model. However,
since all previous algorithms use the length prediction model, we
compute permutation predictions based on predicted processing

 9

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Alexander Lindermayr and Nicole Megow

times. The results for the single machine setting are given in Sec-
tion 5.1. We further give experimental results for PTS for schedul-
ing weighted jobs with release dates on parallel identical machines
in Section 5.2. But first we describe the instance generation and
experiment setups.

Dataset. We generate synthetic instances. Each instance is com-
posed of 1000 jobs. We choose this size as a compromise between
computational effort and giving the algorithms enough jobs to work
properly. The processing requirements for the jobs are individually
sampled from a Pareto distribution with scale 1 and shape 1.1. This
distribution was used in the seminal work on learning-augmented
scheduling [48] and is (similar to the related Zipf distribution) gen-
erally considered to model scheduling applications very well [1, 14,
18, 21, 27, 31, 35]. Intuitively, it gives many tiny jobs and few very
large jobs. We also performed our experiments with processing re-
quirements sampled from an exponential distribution with mean 1
as well as from a Weibull distribution with scale 2 and shape 0.5,
which were used in [44, 45].

Types of experiments. We perform two types of experiments. In
sensitivity experiments, we generate length predictions by adding
Gaussian noise to the processing requirements with an increasing
standard deviation 𝜔 for a fixed instance. This type of experiment
was also performed by Kumar et al. [48] to evaluate PRR as well as
in other works on learning-augmented algorithms [4, 5, 39, 40].

In online learning experiments we first fix a synthetic instance,
called base instance. Then, we consider 10 subsequent rounds,
where in every round 𝑡 an instance 𝐽𝑡 arrives, which is generated
by adding independently sampled Gaussian noise to the base in-
stance. To calculate this noise we use scaled standard deviations
parameterized by a factor 𝛾 ≥ 0. That is, we compute noise for true
processing requirement 𝑝 with a standard deviation equal to 𝛾 · √𝑝 .
We feel that this is more realistic for this type of experiment than
only using a fixed standard deviation for all jobs, as small jobs
may vary less than large jobs over time. We then compute a pre-
diction for round 𝑡 using the ERM algorithm on the set of previous
instances {𝐽0, . . . , 𝐽𝑡−1}, as these are in round 𝑡 known to the algo-
rithms. As length prediction for round 0 we use an independently
sampled random instance. This type of experiment was also per-
formed in [19] to demonstrate the speedup of predictions for the
bipartite matching problem.

5.1 Experiments for a single machine
Algorithms. We present implementation details of the considered

algorithms. As online benchmark (without predictions), we use the
best-possible non-clairvoyant algorithm Round-Robin (RR) [46].

TwoStage (algorithm by Wei and Zhang [56]) executes RR until a
certain time point depending on the predicted processing require-
ments and the confidence parameter 𝜆 ∈ [0, 1]. Then, it sched-
ules the jobs in non-decreasing order of their predicted processing
requirements. If at any time a job finishes before or after their
predicted length, it finishes the remaining instance with RR. This al-
gorithm achieves for instances with at most two jobs a consistency-
robustness tradeoff that matches a lower bound shown in [56].

MultiStage (algorithm by Im et al. [30]), works in phases and de-
cides whether to follow the prediction or to execute RR by tracking

0 100 101 102 103 104

Noise parameter ω

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Em
pi

ric
al

 c
om

pe
tit

iv
e

ra
tio

PTS (λ = 0.1)
PTS (λ = 0.66)
TwoStage (λ = 0.1)
TwoStage (λ = 0.66)

MultiStage (ε = 0.25)
MultiStage (ε = 10.0)
Round-Robin

Figure 1: Sensitivity experiment.

0 2 4 6 8 10
Round

1.4

1.6

1.8

2.0

2.2

2.4

2.6

cr

PTS (λ = 0.1)
PTS (λ = 0.66)
TwoStage (λ = 0.1)
TwoStage (λ = 0.66)

MultiStage (ε = 0.25)
MultiStage (ε = 10.0)
Round-Robin

Figure 2: Online learning experiment, 𝛾 = 10. Note that the
plots of TwoStage coincide with the plot of Round-Robin.

the quality of the prediction. This is done by processing and com-
puting the error of small random samples, which is then projected
to the whole set of remaining jobs. We implemented a basic variant
of this algorithm, which is O(1)-robust and (1 + 𝜖)-consistent for
any 𝜖 > 0 with high probability under some assumptions (Corol-
lary 34 in [30]). Our implementation uses base two for unspecified
logarithms. A consequence of this choice is that if 𝜖 < 0.215, Multi-
Stage executes solely RR on our instances. Therefore, we performed
the experiments with rather large 𝜖 = 0.25 and 𝜖 = 10.0. The
authors of [30] also give a modification of this algorithm which
achieves bounds in expectation. We omitted the implementation of
this variant as it requires a further parallel execution of RR which
makes the calculation of precise completion times very difficult.

Results. For every parameter setting we perform 10 runs and
measure the performance of the algorithms for this setting in terms
of empirical competitive ratio. That is the average objective value of
an algorithm over all runs divided by the optimal objective value
for the instance. We further report error bars that denote the 95%
confidence interval of the runs.

In the following we discuss results for Pareto-distributed pro-
cessing requirements. For the other considered distributions, we ob-
served very similar results, where in the online learning experiment
we use varied noise parameters due to different job characteristics.

 10

Permutation Predictions for Non-Clairvoyant Scheduling SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

We first discuss results of the sensitivity experiment, which are
visualized in Figure 1. For the consistency case (𝜔 = 0) the algo-
rithms achieve their best performance, as expected. However, even
for very small noise (𝜔 = 0.1), we observe that TwoStage and Mul-
tiStage experience drastic performance losses compared to having
access to precise predictions. This behavior is explainable by the
design of the algorithms, which switch their execution to the robust
fallback procedure RR when detecting incorrect predictions. While
TwoStage stays in this mode until the instance completes, Multi-
Stage still estimates medians and errors, incurring an additional
overhead. While the performance of PTS smoothly degrades for
larger noise depending on 𝜆, it still outperforms RR until𝜔 ≈ 20. For
very large noise, the performance of TwoStage and MultiStage stays
unchanged, while PTS with 𝜆 = 0.1 still grows. For larger values
of 𝜆, e.g. 𝜆 = 0.66 as in the figure, PTS shows a constantly superior
performance than MultiStage and, w.r.t. TwoStage, a smoother per-
formance with substantially better consistency and only slightly
larger robustness.

In the online learning experiment (Figure 2), TwoStage and Mul-
tiStage do not improve their performance over RR by using pre-
dictions. We suspect that this is again due to the fact that the
prediction is still too erroneous over the first ten rounds to activate
their trustful subroutines. We performed these experiments also
with 100 rounds, but did not observe a significant difference. While
in round 0 without any prediction PTS performs slightly worse
than the other algorithms, it improves over RR already after seeing
one sample. This shows that in our setup one sample is enough
to approximately distinguish small jobs from large jobs, and this
classification is enough to prevent large jobs from delaying the com-
pletion of many small jobs. This also demonstrates that permutation
predictions capture the relevant information of practical instances.

5.2 Experiments for multiple machines
We generate 10 synthetic instances with 1000 jobs each. Processing
requirements are again sampled from a Pareto-distribution with
shape 1.1 and scale 1, weights and release dates from a Pareto-
distribution with shape 2 and scale 1. We implement PTS according
to Theorem 3.9 and compare it to the non-clairvoyant WDEQ algo-
rithm [15]. To compute empirical competitive ratios and error bars,
we use the objective value of the clairvoyant, 2-competitive P-WSPT
algorithm [42] as baseline. The results of the sensitivity experiment
for five machines (Figure 3) show that for small noise PTS outper-
forms WDEQ. For growing noise the performance of PTS slowly
degrades, but still improves upon WDEQ until 𝜔 ≈ 35. For large
values of 𝜔 , the empirical competitive ratio of PTS with 𝜆 = 0.1
continues growing, while for 𝜆 = 0.5 and 𝜆 = 0.8 the ratios quickly
converge to their robustness bounds.

6 CONCLUSION
In this paper we proposed a new compact prediction model and er-
ror measure which fulfill desired properties in theory and practice.
We revisited a learning-augmented time sharing framework, gener-
alized it, and derived the first results for more complex scheduling
problems with weights, release dates and multiple machines.

0 100 101 102 103 104

Noise parameter ω

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Em
pi

ric
al

 c
om

p.
 ra

tio
 w

.r.
t.

P-
W

SP
T PTS (λ = 0.1)

PTS (λ = 0.5)
PTS (λ = 0.8)
WDEQ

Figure 3: Sensitivity experiment for five identical parallel
machines.

It would be interesting whether better guarantees are possible by
exploiting the fact that processing at a slower rate makes jobs “ear-
lier” available, or by exploiting communication between combined
algorithms, or by more adaptive algorithms.

ACKNOWLEDGMENTS
Partially supported by the German Science Foundation (DFG) under
contracts ME 3825/1 and 146371743 – TRR 89 Invasive Computing.

REFERENCES
[1] Lada A. Adamic and Bernardo A. Huberman. 2002. Zipf’s law and the Internet.

Glottometrics 3 (2002), 143–150.
[2] Keerti Anand, Rong Ge, and Debmalya Panigrahi. 2020. Customizing ML Predic-

tions for Online Algorithms. In ICML (Proceedings of Machine Learning Research,
Vol. 119). PMLR, 303–313.

[3] S. Anand, Naveen Garg, and Amit Kumar. 2012. Resource augmentation for
weighted flow-time explained by dual fitting. In SODA. SIAM, 1228–1241.

[4] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand
Simon. 2020. Online metric algorithms with untrusted predictions. In ICML
(Proceedings of Machine Learning Research, Vol. 119). PMLR, 345–355.

[5] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand
Simon. 2021. Learning-Augmented Dynamic Power Management with Multiple
States via New Ski Rental Bounds. In NeurIPS. 16714–16726.

[6] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. 2020.
Secretary and Online Matching Problems with Machine Learned Advice. In
NeurIPS. 7933–7944.

[7] Yossi Azar, Stefano Leonardi, and Noam Touitou. 2021. Flow time scheduling
with uncertain processing time. In STOC. ACM, 1070–1080.

[8] Yossi Azar, Stefano Leonardi, and Noam Touitou. 2022. Distortion-Oblivious
Algorithms for Minimizing Flow Time. In SODA. SIAM, 252–274.

[9] Yossi Azar, Debmalya Panigrahi, and Noam Touitou. 2022. Online Graph Algo-
rithms with Predictions. In SODA. SIAM, 35–66.

[10] Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. 2020.
Learning Augmented Energy Minimization via Speed Scaling. In NeurIPS. 15350–
15359.

[11] Étienne Bamas, Andreas Maggiori, and Ola Svensson. 2020. The Primal-Dual
method for Learning Augmented Algorithms. In NeurIPS. 20083–20094.

[12] Soumya Banerjee. 2020. Improving Online Rent-or-Buy Algorithms with Sequen-
tial Decision Making and ML Predictions. In NeurIPS. 21072–21080.

[13] Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. 2022.
Learning-Augmented Weighted Paging. In SODA. SIAM, 67–89.

[14] Nikhil Bansal and Mor Harchol-Balter. 2001. Analysis of SRPT scheduling:
investigating unfairness. In SIGMETRICS/Performance. ACM, 279–290.

[15] Olivier Beaumont, Nicolas Bonichon, Lionel Eyraud-Dubois, and Loris Marchal.
2012. Minimizing Weighted Mean Completion Time for Malleable Tasks Sched-
uling. In IPDPS. IEEE Computer Society, 273–284.

[16] Marcin Bienkowski, Artur Kraska, and Hsiang-Hsuan Liu. 2021. Traveling Repair-
person, Unrelated Machines, and Other Stories About Average Completion Times.
In ICALP (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
28:1–28:20.

 11

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Alexander Lindermayr and Nicole Megow

[17] José R. Correa and Maurice Queyranne. 2012. Efficiency of equilibria in restricted
uniform machine scheduling with total weighted completion time as social cost.
Naval Research Logistics (NRL) 59, 5 (2012), 384–395.

[18] Mark Crovella and Azer Bestavros. 1997. Self-similarity in World Wide Web
traffic: evidence and possible causes. IEEE/ACM Trans. Netw. 5, 6 (1997), 835–846.

[19] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei
Vassilvitskii. 2021. Faster Matchings via Learned Duals. In NeurIPS. 10393–10406.

[20] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. 2021.
Secretaries with Advice. In EC. ACM, 409–429.

[21] David A. Easley and Jon M. Kleinberg. 2010. Networks, Crowds, and Markets -
Reasoning About a Highly Connected World. Cambridge University Press.

[22] Franziska Eberle, Alexander Lindermayr, Nicole Megow, Lukas Nölke, and Jens
Schlöter. 2021. Robustification of Online Graph Exploration Methods. CoRR
abs/2112.05422 (2021).

[23] Yuval Emek, Shay Kutten, and Yangguang Shi. 2021. Online Paging with a
Vanishing Regret. In ITCS (LIPIcs, Vol. 185). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 67:1–67:20.

[24] Sreenivas Gollapudi and Debmalya Panigrahi. 2019. Online Algorithms for Rent-
Or-Buy with Expert Advice. In ICML (Proceedings of Machine Learning Research,
Vol. 97). PMLR, 2319–2327.

[25] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Moseley, and
Kirk Pruhs. 2012. Scheduling heterogeneous processors isn’t as easy as you think.
In SODA. SIAM, 1242–1253.

[26] Varun Gupta, Benjamin Moseley, Marc Uetz, and Qiaomin Xie. 2020. Greed
Works - Online Algorithms for Unrelated Machine Stochastic Scheduling. Math.
Oper. Res. 45, 2 (2020), 497–516.

[27] Mor Harchol-Balter and Allen B. Downey. 1997. Exploiting Process Lifetime
Distributions for Dynamic Load Balancing. ACM Trans. Comput. Syst. 15, 3 (1997),
253–285.

[28] Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. 2018. Competitive
Algorithms from Competitive Equilibria: Non-Clairvoyant Scheduling under
Polyhedral Constraints. J. ACM 65, 1 (2018), 3:1–3:33.

[29] Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk Pruhs. 2014. Selfish-
Migrate: A Scalable Algorithm for Non-clairvoyantly Scheduling Heterogeneous
Processors. In FOCS. IEEE Computer Society, 531–540.

[30] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. 2021.
Non-Clairvoyant Scheduling with Predictions. In SPAA. ACM, 285–294.

[31] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. 2015. Stochastic Scheduling of
Heavy-tailed Jobs. In STACS (LIPIcs, Vol. 30). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 474–486.

[32] Sven Joachim Jäger. 2021. Approximation in deterministic and stochastic machine
scheduling. Ph. D. Dissertation. Technical University of Berlin, Germany.

[33] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. 2020. Online Algorithms for
Weighted Paging with Predictions. In ICALP (LIPIcs, Vol. 168). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 69:1–69:18.

[34] Jae-Hoon Kim and Kyung-Yong Chwa. 2003. Non-clairvoyant scheduling for
weighted flow time. Inf. Process. Lett. 87, 1 (2003), 31–37.

[35] Balachander Krishnamurthy and Jennifer Rexford. 2001. Web Protocols and
Practice - HTTP/1.1, Networking Protocols, Caching, and Traffic Measurement.
Addison-Wesley.

[36] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
2020. Online Scheduling via Learned Weights. In SODA. SIAM, 1859–1877.

[37] Thomas Lavastida, BenjaminMoseley, R. Ravi, and Chenyang Xu. 2021. Learnable
and Instance-Robust Predictions for Online Matching, Flows and Load Balancing.
In ESA (LIPIcs, Vol. 204). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
59:1–59:17.

[38] Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. 2021. Using
Predicted Weights for Ad Delivery. In ACDA. SIAM, 21–31.

[39] Alexander Lindermayr, Nicole Megow, and Bertrand Simon. 2022. Double Cover-
age with Machine-Learned Advice. In ITCS (LIPIcs, Vol. 215). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 99:1–99:18.

[40] Thodoris Lykouris and Sergei Vassilvitskii. 2018. Competitive Caching with
Machine Learned Advice. In ICML (Proceedings of Machine Learning Research,
Vol. 80). PMLR, 3302–3311.

[41] Nicole Megow. 2007. Coping with Incomplete Information in Scheduling –
Stochastic and Online Models. Dissertation 2006, Technische Universität Berlin.
Cuvillier Göttingen.

[42] Nicole Megow and Andreas S. Schulz. 2004. On-line scheduling to minimize
average completion time revisited. Oper. Res. Lett. 32, 5 (2004), 485–490.

[43] Nicole Megow, Marc Uetz, and Tjark Vredeveld. 2006. Models and Algorithms
for Stochastic Online Scheduling. Math. Oper. Res. 31, 3 (2006), 513–525.

[44] Michael Mitzenmacher. 2020. Scheduling with Predictions and the Price of
Misprediction. In ITCS (LIPIcs, Vol. 151). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 14:1–14:18.

[45] Michael Mitzenmacher. 2021. Queues with Small Advice. In ACDA. SIAM, 1–12.
[46] Rajeev Motwani, Steven J. Phillips, and Eric Torng. 1994. Non-Clairvoyant

Scheduling. Theor. Comput. Sci. 130, 1 (1994), 17–47.

[47] K.R. Pruhs, J. Sgall, and E. Torng. 2004. Online Scheduling. In Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, Joseph Y-T. Leung
(Ed.). Chapman & Hall/CRC, Chapter 15.

[48] Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving Online Algo-
rithms via ML Predictions. In NeurIPS. 9684–9693.

[49] Dhruv Rohatgi. 2020. Near-Optimal Bounds for Online Caching with Machine
Learned Advice. In SODA. SIAM, 1834–1845.

[50] Ziv Scully, Isaac Grosof, and Michael Mitzenmacher. 2022. Uniform Bounds for
Scheduling with Job Size Estimates. In ITCS (LIPIcs, Vol. 215). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 114:1–114:30.

[51] J. Sgall. 1998. On-line scheduling – a survey. In Online Algorithms: The State of
the Art, Amos Fiat and Gerhard J. Woeginger (Eds.). LNCS, Vol. 1442. Springer,
Berlin, 196–231.

[52] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding Machine Learning
- From Theory to Algorithms. Cambridge University Press.

[53] Wayne E Smith et al. 1956. Various optimizers for single-stage production. Naval
Research Logistics Quarterly 3, 1-2 (1956), 59–66.

[54] Shufan Wang, Jian Li, and Shiqiang Wang. 2020. Online Algorithms for Multi-
shop Ski Rental with Machine Learned Advice. In NeurIPS. 8150–8160.

[55] Alexander Wei. 2020. Better and Simpler Learning-Augmented Online Caching.
In APPROX-RANDOM (LIPIcs, Vol. 176). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 60:1–60:17.

[56] Alexander Wei and Fred Zhang. 2020. Optimal Robustness-Consistency Trade-
offs for Learning-Augmented Online Algorithms. In NeurIPS. 8042–8053.

[57] Chenyang Xu and Benjamin Moseley. 2021. Learning-Augmented Algorithms
for Online Steiner Tree. CoRR abs/2112.05353 (2021).

A COMPETITIVE RATIO OF PF IN [28]
For the sake of completeness, we shortly argue why we use a differ-
ent competitive ratio for the non-clairvoyant proportional fairness
(PF) algorithm by Im, Kulkarni, Munagala than stated in their pa-
per [28, Theorem 1.2].

On [28, page 16] the authors state that
∑

𝑗 𝛼 𝑗 ≥ (1/2)∑𝑗 𝑤 𝑗𝐶
A
𝑗

[28,
Lemma 3.2] and

∑
𝑑,𝑡 𝛽𝑑𝑡 ≤ 8

𝑠

∑
𝑗 𝑤 𝑗𝐶

A
𝑗

[28, Corollary 3.5] imply
that the dual objective value

∑
𝑗 𝛼 𝑗 −

∑
𝑑,𝑡 𝛽𝑑𝑡 is at least half of PF’s

objective value when 𝑠 = 32. However, combining both results gives
that the dual objective value is at least a quarter of the algorithms
objective value, since with 𝑠 = 32,

DUAL𝑠 =
∑︁
𝑗

𝛼 𝑗 −
∑︁
𝑑,𝑡

𝛽𝑑𝑡 ≥
(

1
2
− 8
𝑠

) ∑︁
𝑗

𝑤 𝑗𝐶
A
𝑗 =

1
4

∑︁
𝑗

𝑤 𝑗𝐶
A
𝑗 .

Indeed, from [28, Proposition 3.1], we conclude for any 𝑠 that
the algorithm has a competitive ratio of at most

𝑠

1
2 − 8

𝑠

,

which has a minimum value of 32 · 4 = 128 for 𝑠 = 32.

 12

	Abstract
	1 Introduction
	2 Problem and prediction model
	2.1 Problem definition
	2.2 Permutation prediction model
	2.3 Prediction error
	2.4 Properties of the error measure

	3 Preferential Time Sharing
	3.1 Single machine
	3.2 Identical parallel machines
	3.3 Unrelated machines

	4 Learnability of Permutations
	5 Experiments
	5.1 Experiments for a single machine
	5.2 Experiments for multiple machines

	6 Conclusion
	Acknowledgments
	References
	A Competitive ratio of PF in DBLP:journals/jacm/ImKM18

