Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Bibliographie HS Bremen
  4. Tackling data scarcity in sonar image classification with hybrid scattering neural networks
 
Verlagslink DOI
10.1109/OCEANSLimerick52467.2023.10244457

Tackling data scarcity in sonar image classification with hybrid scattering neural networks

Veröffentlichungsdatum
2023
Autoren
Steiniger, Yannik  
Bueno, Angel  
Kraus, Dieter  
Meisen, Tobias  
Zusammenfassung
Data scarcity remains the main challenge when developing deep learning models for sonar image analysis. Although dataset augmentation with synthetically generated images has been proposed, these methods are far from optimal as they are unable to capture the range of physical factors affecting sonar images, given the small data regimes used for their training. This work focuses on an alternative solution and investigates the learning of suitable representations for classifying small-sized sonar datasets. To achieve this, we propose a new approach that entails the combination of convolutional and scattering neural networks, a wavelet-based neural network that produces feature map representations robust to image variations. Our experiments show that these representations are easier to classify, leading to a performance increase of 4.5 percentage points in F1-score for the combined network compared to a plain convolutional neural network. Furthermore, we interpret the representation obtained by the scattering transformation as robust feature descriptors, where the geometric shapes of underwater objects are rendered prominent and stable to minor sonar distortions.
Verlag
IEEE
Institution
Hochschule Bremen  
Fachbereich
Hochschule Bremen - Fakultät 4: Elektrotechnik und Informatik  
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
OCEANS 2023 - Limerick  
Startseite
1
Endseite
7
Sprache
Englisch

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken