Diffusion weighted magnetic resonance imaging for temperature measurements in catalyst supports with an axial gas flow
File | Description | Size | Format | |
---|---|---|---|---|
M. Mirdrikvand, H. Ridder, J. Thöming, W. Dreher, Diffusion weighted magnetic resonance imaging_2019_accepted version_Deckblatt_pdfa1.pdf | 3.44 MB | Adobe PDF | View/Open |
Authors: | Mirdrikvand, Mojtaba ![]() Ridder, Harm ![]() Thöming, Jorg ![]() Dreher, Wolfgang ![]() |
Abstract: | In situ thermometry of catalytic gas phase reactions allows the determination of temperature profiles in catalyst beds. In NMR imaging systems used for measuring the chemical composition of species in model reactors, temperature measurements by NMR spectroscopy are technically challenging and confined to a rather low temperature range. In this study, an optimized NMR in situ technique is proposed, which will allow the determination of the temperature distribution in highly exothermic reactions on structured catalysts. Diffusion weighted magnetic resonance imaging (DW-MRI) was successfully applied as an alternative method for temperature measurements commonly performed by chemical shift measurements using ethylene glycol. DW-MRI applied with different diffusion sensitizing gradients allows high-resolution imaging of the temperature dependent diffusion coefficient, without the need for high spatial homogeneity of the magnetic field. Using 3D DW-MRI on ethylene glycol, glycerol, and the temperature stable ionic liquid Pyr13 [TFSI] (decomposition temperature of 400 °C) as NMR thermometers, measurements were performed in a temperature range from 20 to 160 °C. The proposed method can be used in reaction engineering approaches performed in NMR systems. |
Keywords: | Mimenima | Issue Date: | 24-Jul-2019 | Publisher: | Royal Society of Chemistry | Project: | MIMENIMA GRK 1860 | Funders: | Deutsche Forschungsgemeinschaft | Grant number: | 601090 | Journal/Edited collection: | Reaction Chemistry & Engineering | Start page: | 1844 | End page: | 1853 | Volume: | 4 | Type: | Artikel/Aufsatz | ISSN: | 2058-9883 | Secondary publication: | yes | Document version: | Postprint | DOI: | 10.26092/elib/2475 | URN: | urn:nbn:de:gbv:46-elib71544 | Institution: | Universität Bremen | Faculty: | Fachbereich 02: Biologie/Chemie (FB 02) Zentrale Wissenschaftliche Einrichtungen und Kooperationen |
Institute: | Zentrum für Umweltforschung und nachhaltige Technologien (UFT) |
Appears in Collections: | Forschungsdokumente |
Page view(s)
100
checked on Apr 2, 2025
Download(s)
55
checked on Apr 2, 2025
Google ScholarTM
Check
Items in Media are protected by copyright, with all rights reserved, unless otherwise indicated.