Ehrhart Quasi-Polynomials of almost integral polytopes
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
thesis_publication.pdf | Ehrhart Quasi-Polynomials of Almost Integral Polytopes | 495.42 kB | Adobe PDF | Anzeigen |
Autor/Autorin: | de Vries, Christopher ![]() |
BetreuerIn: | Feichtner, Eva-Maria ![]() |
1. GutachterIn: | Feichtner, Eva-Maria ![]() |
Weitere Gutachter:innen: | Yoshinaga, Masahiko ![]() |
Zusammenfassung: | In this thesis we characterize centrally symmetric lattice polytopes and lattice zonotopes through properties of the Ehrhart quasi-polynomials of almost integral polytopes. To this end, we introduce the notion of GCD-property and symmetry for quasi-polynomials. A lattice polytope is centrally symmetric if and only if the Ehrhart quasi-polynomial of every almost integral polytope derived from that polytope is symmetric. Furthermore, we show that a lattice polytope is a zonotope if and only if the Ehrhart quasi-polynomial of every almost integral polytope derived from that polytope satisfies the GCD-property. In order to describe the constituents of the Ehrhart quasi-polynomial of an almost integral polytope, we introduce the translated lattice point enumerator and prove that this function is a polynomial. |
Schlagwort: | Polytopes; Ehrhart Theory | Veröffentlichungsdatum: | 17-Mai-2022 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | DOI: | 10.26092/elib/1559 | URN: | urn:nbn:de:gbv:46-elib59546 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
435
checked on 04.04.2025
Download(s)
517
checked on 04.04.2025
Google ScholarTM
Prüfe
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons