Repeated Averaging and Bounded Confidence Modeling, Analysis and Simulation of Continuous Opinion Dynamics
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
00010668.pdf | 5.97 MB | Adobe PDF | Anzeigen |
Sonstige Titel: | Wiederholtes Mitteln bei beschränktem VertrauenModellierung, Analyse und Simulation von kontinuierlicher Meinungsdynamik | Autor/Autorin: | Lorenz, Jan | BetreuerIn: | Krause, Ulrich | 1. GutachterIn: | Krause, Ulrich | Weitere Gutachter:innen: | Hegselmann, Rainer | Zusammenfassung: | This thesis is about dynamical systems of agents which perform repeated averaging under bounded confidence. The main modeling issue is continuous opinion dynamics. This includes dynamics of agents in a political opinion space as well as dynamics of collective motion in swarms of mobile autonomous robots. Conditions for convergence to consensus are derived for systems where dynamics are driven by very generally defined averaging maps. Several conditions, examples and counter-examples for convergence of infinite products of row-stochastic matrices are given. Finally, the sets of fixed points are characterized. The density-based bounded confidence models are used to get an overview for the case when agents' initial opinions are uniformly distributed. Bifurcation diagrams for attractive states are computed as well as extended phase diagrams for the consensus transitions in populations with two different levels of confidence. |
Schlagwort: | social simulation; agent-based; general mean; density-based; interactive Markov chain; discrete master equation; convergence to consensus; infinite matrix products; nonnegative matrices; row-stochastic; scrambling; Gantmacher form; coefficient of ergodicity; averaging map; equiproper; joint spectral radius; sociophysics; bifurcation diagrams; extended phase diagrams; social psychology | Veröffentlichungsdatum: | 5-Mär-2007 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | URN: | urn:nbn:de:gbv:46-diss000106688 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
1.024
checked on 03.04.2025
Download(s)
341
checked on 03.04.2025
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.