Regularity of Aperiodic Subshifts and Connections to Intermediate beta-Transformations
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
00106948-1.pdf | 850.79 kB | Adobe PDF | Anzeigen |
Sonstige Titel: | Regularität Aperiodischer Subshifts und eine Verbindung zu Intermediären beta-Transformationen |
Autor/Autorin: | Steffens, Malte Friedel ![]() |
BetreuerIn: | Keßeböhmer, Marc |
1. GutachterIn: | Keßeböhmer, Marc |
Weitere Gutachter:innen: | Pohl, Anke ![]() |
Zusammenfassung: | At the turn of this century Durand, Lagarias and Pleasants established that key features of minimal subshifts to be studied are linearly repetitive, repulsive and power free. In this thesis, we introduce generalisations and extensions of these features and establish a basic theory. Further, we study these new notions in the context of Sturmian subshifts and a family of aperiodic minimal subshifts ... At the turn of this century Durand, Lagarias and Pleasants established that key features of minimal subshifts to be studied are linearly repetitive, repulsive and power free. In this thesis, we introduce generalisations and extensions of these features and establish a basic theory. Further, we study these new notions in the context of Sturmian subshifts and a family of aperiodic minimal subshifts stemming from Grigorchuk's infinite 2-group. In the second part, we study sequences of intermediate beta-transformations. Especially, we answer the question of how a sequence of corresponding normalised Parry measures converges as beta goes to one and we connect this convergence to Sturmian subshifts and the famous Thue-Morse sequence. |
Schlagwort: | Aperiodic order; Complexity; Ergodic theory; Subshifts; Grigorchuk group; beta-Transformations; Sturmian sequences |
Veröffentlichungsdatum: | 8-Nov-2018 |
Dokumenttyp: | Dissertation |
Zweitveröffentlichung: | no |
URN: | urn:nbn:de:gbv:46-00106948-11 |
Institution: | Universität Bremen |
Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.