Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Analyse von Längsschnittdaten mit fehlenden Werten: Grundlagen, Verfahren und Anwendungen.
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000012631

Analyse von Längsschnittdaten mit fehlenden Werten: Grundlagen, Verfahren und Anwendungen.

Veröffentlichungsdatum
2004-02-04
Autoren
Spiess, Martin  
Gutachter
Huinink, Johannes  
Zusammenfassung
The first part gives an overview over foundations of empirical social research and an introduction into the estimation of linear fixed and random effects panel models. In addition, the semi parametric estimation of binary panel models based on generalized estimating equations (GEE) is addressed. The standard GEE approach, where the covariance structure parameters are treated as nuisance parameters is then generalized to include estimating equations for both, mean and covariance structure parameters. This approach allows the estimation of simultaneous equations panel models with mixed continuous and ordered categorical outcomes which is discussed in detail. As a measure of the explanatory power of the model a pseudo-R^2 measure is developed and evaluated. In the second part, fundamental concepts important with respect to the analysis of data sets with missing values are introduced and discussed and various approaches and methods to compensate for missing data are reviewed. The method of multiple imputation and its application is treated in detail. The approaches and techniques proposed and discussed in the first two parts are tested and illustrated with the help of various simulation studies and examples, respectively.The last chapter deals with possibly time changing effects of variables that can be interpreted as social investments on variables that can be interpreted as subjective and objective gratification variables. The resulting two-equation panel model with mixed continuous and ordered categorical outcomes is estimated with the approach described in the first part based on a data set with missing values. To compensate for missing data, a mixed weighting and multiple imputation approach is adopted.
Schlagwörter
Panel models

; 

generalized estimating equations

; 

pseudo-R square

; 

missing data

; 

weighting

; 

multiple imputation

; 

status inconsistency
Institution
Universität Bremen  
Fachbereich
Fachbereich 08: Sozialwissenschaften (FB 08)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Deutsch
Dateien
Lade...
Vorschaubild
Name

E-Diss1263_Habil_Spiess_FB8.pdf

Size

2.53 MB

Format

Adobe PDF

Checksum

(MD5):e46bb75be45a9319d1aadb03729f9025

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken