Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Generalized Strong Laws of Large Numbers for Intermediately Trimmed Sums for Non-negative Stationary Processes
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00104900-16

Generalized Strong Laws of Large Numbers for Intermediately Trimmed Sums for Non-negative Stationary Processes

Veröffentlichungsdatum
2015-10-19
Autoren
Schindler, Tanja  
Betreuer
Kesseböhmer, Marc  
Gutachter
Haynes, Alan  
Zusammenfassung
We consider intermediately trimmed sums for non-negative identically distributed random variables. Here we distinguish three cases, namely independent random variables, observables of an underlying dynamical system with a spectral gap, and à -mixing random variables. We show that in all three cases it is possible to find a proper trimming function for every distribution function such that an intermediate trimmed strong law holds. For the case that the distribution function has regularly varying tails and the random variables are independent we give sharp conditions on the trimming function for an intermediate trimmed strong law. The same trimming rate holds for observables of a dynamical system with a spectral gap. For the case of mixing random variables we show some convergence results with stronger conditions on the trimming rate dependent on the mixing coefficient.
Schlagwörter
trimmed sums

; 

laws of large numbers

; 

regular variation

; 

mixing random variables

; 

transfer operator

; 

spectral gap
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00104900-1.pdf

Size

1.31 MB

Format

Adobe PDF

Checksum

(MD5):408924a94da756bca94d526b8bdaf717

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken