Skip navigation
SuUB logo
DSpace logo

  • Zur Startseite
  • Institutionen
    • Universität Bremen
    • Hochschule Bremen
    • Hochschule Bremerhaven
  • Anmelden:
    • Mein Media
    • Abonnement
      Neuerscheinungen
    • Benutzerprofil bearbeiten

Zitierlink: https://doi.org/10.26092/elib/3833

Verlagslink DOI: https://doi.org/10.1049/icp.2023.1427
Alferink et al_Optimization_Based_Operation_of_Island_Hybrid_Power_Systems_2023_accepted-version.pdf
OpenAccess
 
copyright

Optimization-based operation of island hybrid power systems: a case study in Suðuroy, Faroe Islands


Datei Beschreibung GrößeFormat
Alferink et al_Optimization_Based_Operation_of_Island_Hybrid_Power_Systems_2023_accepted-version.pdf2.19 MBAdobe PDFAnzeigen
Autor/Autorin: Alferink, Marco 
Reus, Lucas  
Goudarzi, Farshid  
Hofmann, Lutz  
Michels, Kai 
Zusammenfassung: 
An optimization-based energy management system (EMS) for the island hybrid power system of Suðuroy on the Faroe Islands is proposed in this paper. Next to balancing generation and load, the aim lies in reducing the operational costs while dealing with uncertainties from the intermittent nature of renewables. This is achieved by a two-layer model predictive control (MPC) approach solving a mixed-integer linear programming problem for unit commitment, as well as a non-linear programming optimal power flow problem for economic dispatch. The setpoints are transferred to the local controllers of the distributed energy resources. Simulations of the MPC strategy show that the utilization of renewables is preferred and, thus, decreasing operational costs are obtained while satisfying operational and security requirements. The proposed EMS is further investigated in quasi-stationary simulations using a simplified model of the Suðuroy power system. It can be observed that after changes of power setpoints and besides small deviations from the predicted values, no stability boundaries are violated.
Schlagwort: Power System; Faroe Islands; optimization problem; optimization-based energy management system (EMS); model predictive control (MPC)
Veröffentlichungsdatum: 2023
Verlag: IET
Zeitschrift/Sammelwerk: 7th International Hybrid Power Plants & Systems Workshop (HYB 2023) 
Dokumenttyp: Konferenzbeitrag
Konferenz: 7th International Hybrid Power Plants & Systems Workshop (HYB 2023) 
Zweitveröffentlichung: yes
Dokumentversion: Postprint
DOI: 10.26092/elib/3833
URN: urn:nbn:de:gbv:46-elib89541
Institution: Universität Bremen 
Fachbereich: Fachbereich 01: Physik/Elektrotechnik (FB 01) 
Institut: Institut für Automatisierungstechnik (IAT) 
Enthalten in den Sammlungen:Forschungsdokumente

  

Seitenansichten

15
checked on 10.05.2025

Download(s)

5
checked on 10.05.2025

Google ScholarTM

Prüfe


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.

Impressum -Feedback -Datenschutz
Media - Erweiterung bereitgestellt und optimiert von Logo 4SCIENCE