Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Impact of process flow conditions on particle morphology in metal powder production via gas atomization
 
Zitierlink DOI
10.26092/elib/3640
Verlagslink DOI
10.1016/j.apt.2019.10.022

Impact of process flow conditions on particle morphology in metal powder production via gas atomization

Veröffentlichungsdatum
2020-02-11
Autoren
Beckers, Daniel  
Ellendt, Nils  
Fritsching, Udo  
Uhlenwinkel, Volker  
Zusammenfassung
Additive manufacturing processes as for instance selective laser melting or electron beam melting are becoming more common and just turning into standard manufacturing processes for metal components. Nevertheless, these processes are still new compared to classic powder metallurgy manufacturing routes such as pressing and sintering. Hence not all necessary requirements for the powders in use are fully known yet. This makes an increase in control of the powder properties a crucial task to achieve. To reach this goal one must understand the different influences on the powder production process from the beginning of the whole production route. In this work, the influence of the spray chamber flow on the particle morphology is examined. The nozzle system used to produce the metal powders is a close-coupled atomization system with a convergent-divergent gas nozzle configuration. The particle morphology as well as the particle size distribution have been analyzed to examine the influence of the atomization gas flow compared to an additional use of a coaxial gas flow. To review the changes of the flow patterns, computational fluid dynamic simulations have been performed. The particle trajectories were calculated to assess the change in particle behavior as well. Atomization experiments have been conducted with an AISI 52100 (1.3505) steel in a small batch atomization plant to evaluate the influence of the change in flow on the particle size distribution and circularity. The experimental results show that a use of additional coaxial gas leads to an increase in particle circularity up to 10% for relevant particle sizes. An approach for the quantification of satellite occurrence is given by examination of the shift of the particle size distribution to smaller diameters.
Schlagwörter
Atomization

; 

Metal powders

; 

Particles

; 

CFD
Verlag
Elsevier Science
Institution
Universität Bremen  
Fachbereich
Institut für Werkstofftechnik (IWT)  
Fachbereich 04: Produktionstechnik, Maschinenbau & Verfahrenstechnik (FB 04)  
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
Advanced Powder Technology  
Band
31
Heft
1
Startseite
300
Endseite
311
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Beckers et al_ Impact of process flow conditions on particle morphology in metal_2020_accepted-version.pdf

Size

4.86 MB

Format

Adobe PDF

Checksum

(MD5):47480f27d2c87d15e2241fe5d0c5cfa4

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken