Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Image reconstruction by Mumford-Shah regularization with a priori edge information
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00104567-18

Image reconstruction by Mumford-Shah regularization with a priori edge information

Veröffentlichungsdatum
2015-02-26
Autoren
Page, Thomas Sebastian  
Betreuer
Jiang, Ming  
Gutachter
Maass, Peter  
Zusammenfassung
The Mumford-Shah functional has provided an important approach for image denoising and segmentation. Recently, it has been applied to image reconstruction in fields such as X-ray tomography and electric impedance tomography. In this thesis we study the applicability of the Mumford-Shah model to a setting, where a priori edge information is available and reliable. Such a situation occurs for example in biomedical imaging, where multimodal imaging systems have received a lot of interest. The regularization terms in the Mumford-Shah functional force smoothness of the image within individual regions and simultaneously detect edges across which smoothing is prevented. We propose to divide the edge penalty into two parts depending on the a priori edge information. We investigate the proposed model for well-posedness and regularization properties under an assumption of pointwise boundedness of the underlying image. Furthermore, we present two variational approximations that allow numerical implementations. For one we prove that it Gamma converges to a special case of our proposed model, the other we motivate heuristically. The resulting algorithm alternates between an image reconstruction and an image evaluation step. We illustrate the feasibility with two numerical examples.
Schlagwörter
Mumford-Shah regularization

; 

Gamma convergence

; 

Ambrosio-Tortorelli functional

; 

modality fusion

; 

image reconstruction
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00104567-1.pdf

Size

1.51 MB

Format

Adobe PDF

Checksum

(MD5):c64ddf633c75459dead586310f974db9

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken