Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Bibliographie HS Bremen
  4. Recurrent double-conditional factor model
 
Verlagslink DOI
10.1007/s00291-024-00771-1

Recurrent double-conditional factor model

Veröffentlichungsdatum
2024
Autoren
Fieberg, Christian  
Liedtke, Gerrit  
Poddig, Thorsten  
Zusammenfassung
In economic applications, the behavior of objects (e.g., individuals, firms, or households) is often modeled as a function of microeconomic and/or macroeconomic conditions. While macroeconomic conditions are common to all objects and change only over time, microeconomic conditions are object-specific and thus vary both among objects and through time. The simultaneous modeling of microeconomic and macroeconomic conditions has proven to be extremely difficult for these applications due to the mismatch of dimensions, potential interactions, and the high number of parameters to estimate. By marrying recurrent neural networks with conditional factor models, we propose a new white-box machine learning method, the recurrent double-conditional factor model (RDCFM), which allows for the modeling of the simultaneous and combined influence of micro- and macroeconomic conditions while being parsimoniously parameterized. Due to the low degree of parameterization, the RDCFM generalizes well and estimation remains feasible even if the time-series and the cross-section are large. We demonstrate the suitability of our method using an application from the financial economics literature.
Verlag
Springer
Institution
Hochschule Bremen  
Fachbereich
Hochschule Bremen - Fakultät 1: Wirtschaftswissenschaften - School of International Business (SiB)  
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
OR Spectrum  
Sprache
Englisch

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken