Skip navigation
SuUB logo
DSpace logo

  • Home
  • Institutions
    • University of Bremen
    • City University of Applied Sciences
    • Bremerhaven University of Applied Sciences
  • Sign on to:
    • My Media
    • Receive email
      updates
    • Edit Account details

Citation link: https://doi.org/10.26092/elib/3317

Publisher DOI: https://doi.org/10.1016/j.renene.2019.01.116
Dollinger et al_IR thermographic flow visualization for the quantification of boundary layer_2019_accepted-version.pdf
OpenAccess
 
by-nc-nd 4.0

IR thermographic flow visualization for the quantification of boundary layer flow disturbances due to the leading edge condition


File Description SizeFormat
Dollinger et al_IR thermographic flow visualization for the quantification of boundary layer_2019_accepted-version.pdf2.99 MBAdobe PDFView/Open
Authors: Dollinger, Christoph  
Balaresque, Nicholas  
Gaudern, Nicholas 
Gleichauf, Daniel  
Sorg, Michael  
Fischer, Andreas  
Abstract: 
The aerodynamic performance of wind turbine rotor blades is influenced by the leading edge condition. Contamination and erosion cause increased surface roughness, unevenness or defects, which affect the boundary layer flow and, thus, reduce lift and increase drag. Current approaches used to determine the disturbed boundary layer flow are based on invasive flow probes with limited spatial resolution; therefore, a non-invasive, camera-based measurement of the boundary layer flow disturbances on wind turbines in operation is proposed using thermographic flow visualization. The actual and the undisturbed laminar-turbulent transition positions are determined in the thermographic images and a subsequent assignment to the rotor blade geometry obtains chord-based information. The normalized difference of both transition positions can be used as a metric to describe the extent of the disturbed boundary layer flow. The approach is demonstrated on a multi-MW horizontal axis wind turbine with a laminar flow reduction of up to 90.4 %. Furthermore, the measurement results allow the estimation of the annual energy production loss due to the leading edge condition, which enhances the industrial standard of simply comparing clean and tripped aerodynamic polars. For the investigated wind turbine, the annual energy production loss amounts to 4.7 % at 6 m/s average wind speed.
Keywords: IR thermographic flow visualization; Boundary layer measurement; Wind turbine rotor blades; Leading edge contamination; Leading edge erosion; Annual energy production
Issue Date: Aug-2019
Publisher: Elsevier Science
Project: German Federal Environmental Foundation 
Bremerhaven Economic Development Company 
Grant number: Grant no. 27118
Grant no. 59203
Journal/Edited collection: Renewable Energy 
Start page: 709
End page: 721
Volume: 138
Type: Artikel/Aufsatz
ISSN: 1879-0682
Secondary publication: yes
Document version: Postprint
DOI: 10.26092/elib/3317
URN: urn:nbn:de:gbv:46-elib82837
Institution: Universität Bremen 
Faculty: Bremer Institut für Messtechnik, Automatisierung und Qualitätswissenschaft (BIMAQ) 
Appears in Collections:Forschungsdokumente

  

Page view(s)

64
checked on May 9, 2025

Download(s)

35
checked on May 9, 2025

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons

Legal notice -Feedback -Data privacy
Media - Extension maintained and optimized by Logo 4SCIENCE