Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. An Adversarial Model for Scheduling with Testing
 
Zitierlink DOI
10.26092/elib/3190
Verlagslink DOI
10.1007/s00453-020-00742-2

An Adversarial Model for Scheduling with Testing

Veröffentlichungsdatum
2020-07-10
Autoren
Dürr, Christoph  
Erlebach, Thomas  
Megow, Nicole  
Meißner, Julie  
Zusammenfassung
We introduce a novel adversarial model for scheduling with explorable uncertainty. In this model, the processing time of a job can potentially be reduced (by an a priori unknown amount) by testing the job. Testing a job j takes one unit of time and may reduce its processing time from the given upper limit ̄pj (which is the time taken to execute the job if it is not tested) to any value between 0 and ̄pj . This setting is motivated e.g., by applications where a code optimizer can be run on a job before executing it. We consider the objective of minimizing the sum of completion times on a single machine. All jobs are available from the start, but the reduction in their processing times as a result of testing is unknown, making this an online problem that is amenable to competitive analysis. The need to balance the time spent on tests and the time spent on job executions adds a novel flavor to the problem. We give the first and nearly tight lower and upper bounds on the competitive ratio for deterministic and randomized algorithms. We also show that minimizing the makespan is a considerably easier problem for which we give optimal deterministic and randomized online algorithms.
Schlagwörter
Explorable uncertainty

; 

Competitive analysis

; 

Lower bounds

; 

Scheduling
Verlag
Springer
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
Algorithmica  
Band
82
Startseite
3630
Endseite
3675
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Alle Rechte vorbehalten
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Duerr_Erlebach_Megow_Meissner_An Adversarial Model for Scheduling with Testing_2020_accepted-version.pdf

Size

3.84 MB

Format

Adobe PDF

Checksum

(MD5):1021674982904d8f530c38a3ea599a72

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken