Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Permutation Predictions for Non-Clairvoyant Scheduling
 
Zitierlink DOI
10.26092/elib/3188
Verlagslink DOI
10.1145/3490148.3538579

Permutation Predictions for Non-Clairvoyant Scheduling

Veröffentlichungsdatum
2022-07-11
Autoren
Lindermayr, Alexander  
Megow, Nicole  
Zusammenfassung
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements with the objective to minimize the total (weighted) completion time. We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in online algorithm design. While previous works used predictions on processing requirements, we propose a new prediction model, which provides a relative order of jobs which could be seen as predicting algorithmic actions rather than parts of the unknown input. We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees and that they are learnable in both, theory and practice. We generalize the algorithmic framework proposed in the seminal paper by Kumar et al. (NeurIPS'18) and present the first learning-augmented scheduling results for weighted jobs and unrelated machines. We demonstrate in empirical experiments the practicability and superior performance compared to the previously suggested single-machine algorithms.
Schlagwörter
Non-clairvoyant

; 

Unrelated machines

; 

Competitive ratio

; 

Predictions

; 

Learning-augmented algorithms
Verlag
Association for Computing Machinery
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '22)  
Startseite
357
Endseite
368
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Alle Rechte vorbehalten
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Lindermayr_Megow_Permutation Predictions for Non-Clairvoyant Scheduling_2022_accepted-version.pdf

Size

2.09 MB

Format

Adobe PDF

Checksum

(MD5):21065fede6fd9dbbb9929bbe7bb7e74a

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken