Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Configuration Balancing for Stochastic Requests
 
Zitierlink DOI
10.26092/elib/3185
Verlagslink DOI
10.1007/978-3-031-32726-1_10

Configuration Balancing for Stochastic Requests

Veröffentlichungsdatum
2023-05-22
Autoren
Eberle, Franziska  
Gupta, Anupam  
Megow, Nicole  
Moseley, Benjamin  
Zhou, Rudy  
Zusammenfassung
The configuration balancing problem with stochastic requests generalizes well-studied resource allocation problems such as load balancing and virtual circuit routing. There are given m resources and n requests; each request has multiple possible configurations, each of which increases the load of each resource by some amount. The goal is to select one configuration for each request to minimize the makespan: the load of the most-loaded resource. In the stochastic setting, the amount by which a configuration increases the resource load is uncertain until the configuration is chosen, but we are given a probability distribution.

We develop both offline and online algorithms for configuration balancing with stochastic requests. When the requests are known offline, we give a non-adaptive policy for configuration balancing with stochastic requests that O( log m / log log m)-approximates the optimal adaptive policy, which matches a known lower bound for the special case of load balancing on identical machines. When requests arrive online in a list, we give a non-adaptive policy that is O( log m ) competitive. Again, this result is asymptotically tight due to information-theoretic lower bounds for special cases (e.g., for load balancing on unrelated machines). Finally, we show how to leverage adaptivity in the special case of load balancing on related machines to obtain a constant-factor approximation offline and an O( log log m )-approximation online. A crucial technical ingredient in all of our results is a new structural characterization of the optimal adaptive policy that allows us to limit the correlations between its decisions.
Schlagwörter
Stochastic scheduling

; 

Stochastic routing

; 

Load balancing
Verlag
Springer
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
Integer programming and combinatorial optimization : 24th international conference, IPCO 2023, Madison, WI, USA, June 21-23, 2023 : proceedings  
Serie(s)
Lecture Notes in Computer Science  
Band
13904
Startseite
127
Endseite
141
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Alle Rechte vorbehalten
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Eberle_Megow_et al_Configuration Balancing for Stochastic Requests_2023_accepted-version.pdf

Size

628.25 KB

Format

Adobe PDF

Checksum

(MD5):c676d19b189b9bce116b1200ed4aa66a

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken