Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Large-scale multiple testing under arbitrary covariance dependency and topological data analysis for mass spectrometry imaging applications
 
Zitierlink DOI
10.26092/elib/2770

Large-scale multiple testing under arbitrary covariance dependency and topological data analysis for mass spectrometry imaging applications

Veröffentlichungsdatum
2024-01-26
Autoren
Vutov, Vladimir  
Betreuer
Dickhaus, Thorsten  
Gutachter
Brannath, Werner  
Zusammenfassung
This work addresses two highly relevant biomedical questions in the context of Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) data analysis. The first one involves discovering molecular masses that are highly associated with the outcome variable, describing cancer types or subtypes. The second task considered is tumor classification.
The thesis commences with Chapter 1, entitled Synopsis, which provides readers with motivation, presents an overview of the research methods employed, and outlines the remaining content of the thesis. The following two chapters deal with discovering the most associative explanatory variables by means of large-scale multiple testing under arbitrary covariance dependency among test statistics. In a nutshell, these frameworks approximate the false discovery proportion of a thresholding procedure for the marginal p-values. The false discovery proportion represents the proportion of false discoveries among all rejections.
Following this, Chapter 4 addresses the task of tumor classification. Briefly, it introduces a new approach to exploiting peak-related information in the context of MALDI data by employing reduced persistence transformation.
Chapter 5 serves as the concluding discussion of the thesis, drawing conclusions for each of the proposed frameworks, addressing computational challenges in the context of MALDI, outlining contributions, and suggesting future research directions.
Schlagwörter
Matrix-assisted laser desorption/ionization

; 

Mass Spectrometry Imaging

; 

False Discovery Proportion

; 

Logistic Regression

; 

Multinomial regression

; 

Multiple Marginal Models

; 

Random Forest

; 

Topological persistence

; 

Data Denoising

; 

Data compression
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Lizenz
https://creativecommons.org/licenses/by/4.0/
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Dissertation _Vutov_2024.pdf

Size

2.92 MB

Format

Adobe PDF

Checksum

(MD5):d0e314f7a4834a5d18f0921845614e29

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken