Zitierlink:
Verlagslink DOI: https://doi.org/10.1016/j.softx.2023.101484
https://media.suub.uni-bremen.de/handle/elib/7516
Verlagslink DOI: https://doi.org/10.1016/j.softx.2023.101484

ANALYSE — Learning to attack cyber–physical energy systems with intelligent agents
Autor/Autorin: | Wolgast, Thomas ![]() Wenninghoff, Nils ![]() Balduin, Stephan ![]() Veith, Eric ![]() Fraune, Bastian ![]() Woltjen, Torben ![]() Nieße, Astrid ![]() |
Zusammenfassung: | The ongoing penetration of energy systems with information and communications technology (ICT) and the introduction of new markets increase the potential for malicious or profit-driven attacks that endanger system stability. To ensure security-of-supply, it is necessary to analyze such attacks and their underlying vulnerabilities, to develop countermeasures and improve system design. We propose ANALYSE, a machine-learning-based software suite to let learning agents autonomously find attacks in cyber–physical energy systems, consisting of the power system, ICT, and energy markets. ANALYSE is a modular, configurable, and self-documenting framework designed to find yet unknown attack types and to reproduce many known attack strategies in cyber–physical energy systems. |
Schlagwort: | Reinforcement Learning; Vulnerability analysis; PalaestrAI | Veröffentlichungsdatum: | 2023 | Verlag: | Elsevier Science | Zeitschrift/Sammelwerk: | SoftwareX | Heft: | 23 | Startseite: | 101484 | Dokumenttyp: | Artikel/Aufsatz | ISSN: | 23527110 | Institution: | Hochschule Bremen | Fachbereich: | Hochschule Bremen - Fakultät 4: Elektrotechnik und Informatik |
Enthalten in den Sammlungen: | Bibliographie HS Bremen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.