Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Limited Memory BFGS method for Sparse and Large-Scale Nonlinear Optimization
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00104042-12

Limited Memory BFGS method for Sparse and Large-Scale Nonlinear Optimization

Veröffentlichungsdatum
2014-09-16
Autoren
Rauski, Sonja  
Betreuer
Büskens, Christof  
Gutachter
Gerdts, Matthias  
Zusammenfassung
Optimization-based control systems are used in many areas of application, including aerospace engineering, economics, robotics and automotive engineering. This work was motivated by the demand for a large-scale sparse solver for this problem class. The sparsity property of the problem is used for the computational efficiency regarding performance and memory consumption. This includes an efficient storing of the occurring matrices and vectors and an appropriate approximation of the Hessian matrix, which is the main subject of this work. Thus, a so-called the limited memory BFGS method has been developed. The limited memory BFGS method, has been implemented in a software library for solving the nonlinear optimization problems, WORHP. Its solving performance has been tested on different optimal control problems and test sets.
Schlagwörter
Nonlinear Programming

; 

Large-Scale Optimization

; 

Quasi-Newton methods

; 

BFGS method

; 

Limited memory method

; 

Optimal Control
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Deutsch
Dateien
Lade...
Vorschaubild
Name

00104042-1.pdf

Size

8.64 MB

Format

Adobe PDF

Checksum

(MD5):876040c4f3fb4f5d13fed9798c586f83

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken