Skip navigation
SuUB logo
DSpace logo

  • Home
  • Institutions
    • University of Bremen
    • City University of Applied Sciences
    • Bremerhaven University of Applied Sciences
  • Sign on to:
    • My Media
    • Receive email
      updates
    • Edit Account details

Citation link: https://doi.org/10.26092/elib/2607

Publisher DOI: https://doi.org/10.1016/j.commatsci.2021.110295
KUNDIN - Phase-field modeling of grain growth.pdf
OpenAccess
 
by-nc-nd 4.0

Phase-field modeling of grain growth in presence of grain boundary diffusion and segregation in ceramic matrix mini-composites


File Description SizeFormat
KUNDIN - Phase-field modeling of grain growth.pdf3.83 MBAdobe PDFView/Open
Authors: Kundin, Julia  
Farhandi, Hedieh  
Ganesan, Kamatchi Priya 
Saint Martin Almeida, Renato  
Tushtev, Kamen  
Rezwan, Kurosch  
Abstract: 
The grain boundary diffusion and segregation can influence the grain growth kinetics, the grain size distribution, and therefore the mechanical properties of the ceramic matrix composites. The present paper proposes a phasefield modeling approach to simulate the grain growth in polycrystalline alumina fibers embedded in alumina matrix at temperatures above 1000 ◦C in presence of the grain boundary diffusion of dopants from the matrix to the fiber and vice versa. The multi-phase-field model for grain growth [I. Steinbach and F. Pezzolla, Phys. D, 134 (1999) 385] is extended by the incorporation of the grain boundary diffusion, grain boundary segregation model, and the dependence of the interface mobility on the segregation concentration. The kinetic parameters of the model which allow describing the real microstructure evolution were estimated by the comparison to the experimental measurements. The simulation and experimental results of the grain growth with the diffusion of dopants in Nextel 610 fibers show the significant effect of the grain boundary diffusion on the grain size distribution. The results of numerical tests were used to adjust the values of the grain boundary diffusion coefficients by the experimental data at different temperatures by means of an inverse method. From the simulations, the diffusion coefficient of Mg was estimated to be 6–7 times higher than that of Si.
Keywords: Grain growth; Grain boundary diffusion; Phase-field modeling; Ceramic Matrix Composites; Ceramic fibers Nextel 610
Issue Date: 29-Jan-2021
Publisher: Elsevier {BV}
Project: DFG 
DFG 
Grant number: KU 3122/3-1
TU 364/5-1
Journal/Edited collection: Computational Materials Science 
Volume: 190
Pages: 13
Type: Artikel/Aufsatz
ISSN: 09270256
Secondary publication: yes
Document version: Postprint
DOI: 10.26092/elib/2607
URN: urn:nbn:de:gbv:46-elib73511
Institution: Universität Bremen 
Faculty: Fachbereich 04: Produktionstechnik, Maschinenbau & Verfahrenstechnik (FB 04) 
Institute: Fachgebiet 17: Keramische Werkstoffe und Bauteile 
Appears in Collections:Forschungsdokumente

  

Page view(s)

139
checked on May 10, 2025

Download(s)

41
checked on May 10, 2025

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons

Legal notice -Feedback -Data privacy
Media - Extension maintained and optimized by Logo 4SCIENCE