Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes
Authors: | Ahilan, Vignesh ![]() de Barros, Camila Cabral Bhowmick, Gourav Dhar ![]() Ghangrekar, Makarand ![]() Murshed, Mohammad Mangir ![]() Wilhelm, Michaela ![]() Rezwan, Kurosch ![]() |
Abstract: | Proton-conducting porous ceramic membranes were synthesized via a polymer-derived ceramic route and probed in a microbial fuel cell (MFC). Their chemical compositions were altered by adding carbon allotropes including graphene oxide (GO) and multiwall carbon nanotubes into a polysiloxane matrix as filler materials. Physical characteristics of the synthesized membranes such as porosity, hydrophilicity, mechanical stability, ion exchange capacity, and oxygen mass transfer coefficient were determined to investigate the best membrane material for further testing in MFCs. The ion exchange capacity of the membrane increased drastically after adding 0.5 wt% of GO at an increment of 9 fold with respect to that of the non-modified ceramic membrane, while the oxygen mass transfer coefficient of the membrane decreased by 52.6%. The MFC operated with this membrane exhibited a maximum power density of 7.23 W m-3 with a coulombic efficiency of 28.8%, which was significantly higher than the value obtained using polymeric Nafion membrane. Hence, out of all membranes tested in this study the GO-modified polysiloxane based ceramic membranes are found to have a potential to replace Nafion membranes in pilot scale MFCs. |
Keywords: | Graphene oxide; Microbial fuel cell; Multiwall carbon nanotube; Polymer derived ceramic; proton conducting membrane; Mimenima | Issue Date: | 25-Jun-2019 | Publisher: | Elsevier | Project: | MIMENIMA GRK 1860 | Funders: | Deutsche Forschungsgemeinschaft | Grant number: | 601090 | Journal/Edited collection: | Bioelectrochemistry (Amsterdam, Netherlands) | Start page: | 259 | End page: | 269 | Volume: | 129 | Pages: | 11 | Type: | Artikel/Aufsatz | ISSN: | 15675394 | Secondary publication: | yes | Document version: | Postprint | DOI: | 10.26092/elib/2494 | URN: | urn:nbn:de:gbv:46-elib71742 | Institution: | Universität Bremen | Faculty: | Fachbereich 04: Produktionstechnik, Maschinenbau & Verfahrenstechnik (FB 04) | Institute: | Institut für Anorganische Chemie und Kristallographie MAPEX Center for Materials and Processes |
Appears in Collections: | Forschungsdokumente |
Page view(s)
114
checked on Apr 3, 2025
Download(s)
57
checked on Apr 3, 2025
Google ScholarTM
Check
This item is licensed under a Creative Commons License