Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes
Veröffentlichungsdatum
2019-06-25
Zusammenfassung
Proton-conducting porous ceramic membranes were synthesized via a polymer-derived ceramic route and probed in a microbial fuel cell (MFC). Their chemical compositions were altered by adding carbon allotropes including graphene oxide (GO) and multiwall carbon nanotubes into a polysiloxane matrix as filler materials. Physical characteristics of the synthesized membranes such as porosity, hydrophilicity, mechanical stability, ion exchange capacity, and oxygen mass transfer coefficient were determined to investigate the best membrane material for further testing in MFCs. The ion exchange capacity of the membrane increased drastically after adding 0.5 wt% of GO at an increment of 9 fold with respect to that of the non-modified ceramic membrane, while the oxygen mass transfer coefficient of the membrane decreased by 52.6%. The MFC operated with this membrane exhibited a maximum power density of 7.23 W m-3 with a coulombic efficiency of 28.8%, which was significantly higher than the value obtained using polymeric Nafion membrane. Hence, out of all membranes tested in this study the GO-modified polysiloxane based ceramic membranes are found to have a potential to replace Nafion membranes in pilot scale MFCs.
Schlagwörter
Graphene oxide
;
Microbial fuel cell
;
Multiwall carbon nanotube
;
Polymer derived ceramic
;
proton conducting membrane
;
Mimenima
Verlag
Elsevier
Institution
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
Band
129
Startseite
259
Endseite
269
Seitenzahl
11
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
V. Ahilan,C.C. Barros, G.D. Bhowmick, M.M. Gangrekar, M.M. Murshed, M. Wilhelm, K. Rezwan, Microbial fuel cell performance of graphitic carbon_2019_accepted version.pdf
Size
1.62 MB
Format
Adobe PDF
Checksum
(MD5):d88a2f79be92f05d9dc69aa0ca18f8d6