The gas flow diode effect: theoretical and experimental analysis of moderately rarefied gas flows through a microchannel with varying cross section
File | Description | Size | Format | |
---|---|---|---|---|
I. Graur, T. Veltzke, J.G. Méolans, M.T. Ho, J. Thöming, The gas flow diode effect, theoretical and experimental analysis_2015_ accepted version_Deckblatt_pdfa1.pdf | 480.65 kB | Adobe PDF | View/Open |
Authors: | Graur, I. Veltzke, T. Méolans, J. G. Ho, M. T. Thöming, J. ![]() |
Abstract: | Moderately rarefied gas flows are clearly distinguished from viscous flow in the continuum regime and from free molecular flow at high rarefaction. Being of relevance for various technical applications, the understanding of such flow processes is crucial for considerable enhancement in micro electromechanical systems (MEMS) and vacuum techniques. In this work, we focus on the isothermal rarefied gas flow through long channels with longitudinally varying cross section. We apply two approaches, an analytical one and a numerical one that is based on the solution of the linearized S-model, both allowing us to predict the mass flow rate in diverging and converging flow directions for arbitrary pressure gradients. Both approaches are validated by CO2, N2 and Ar permeation experiments on tapered microchannels manufactured by means of micromilling. The local Knudsen numbers ranged from 0.0471 to 0.2263. All the numerical and analytical results are in good agreement to the experimental data and show that the mass flow rate is significantly higher when the duct is perfused in converging direction. The understanding of the physical phenomenon of this gas flow diode effect might pave the way for novel components in MEMS such as static one-way valves. |
Keywords: | Rarefied gas; Long tapered channel; Gas flow diode effect; Microchannel production; Mass flow rate measuremen; Mimenima | Issue Date: | 20-Jun-2014 | Publisher: | Springer | Project: | MIMENIMA GRK 1860 | Funders: | Deutsche Forschungsgemeinschaft | Grant number: | 601090 | Journal/Edited collection: | Microfluidics and Nanofluidics | Start page: | 391 | End page: | 402 | Volume: | 18 | Type: | Artikel/Aufsatz | ISSN: | 1613-4982 | Secondary publication: | yes | Document version: | Postprint | DOI: | 10.26092/elib/2442 | URN: | urn:nbn:de:gbv:46-elib71219 | Institution: | Universität Bremen | Faculty: | Zentrale Wissenschaftliche Einrichtungen und Kooperationen | Institute: | Zentrum für Umweltforschung und nachhaltige Technologien (UFT) |
Appears in Collections: | Forschungsdokumente |
Page view(s)
101
checked on Apr 22, 2025
Download(s)
58
checked on Apr 22, 2025
Google ScholarTM
Check
Items in Media are protected by copyright, with all rights reserved, unless otherwise indicated.