Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. GDS: Gradient based Density Spline Surfaces for Multiobjective Optimization in Arbitrary Simulations
 
Zitierlink DOI
10.26092/elib/2349
Verlagslink DOI
10.1145/3064911.3064917

GDS: Gradient based Density Spline Surfaces for Multiobjective Optimization in Arbitrary Simulations

Veröffentlichungsdatum
2017
Autoren
Lange, Patrick  
Weller, René  
Zachmann, Gabriel  
Zusammenfassung
We present a novel approach for approximating objective functions in arbitrary deterministic and stochastic multi-objective blackbox simulations. Usually, simulated-based optimization approaches require pre-defined objective functions for optimization techniques in order to find a local or global minimum of the specified simulation objectives and multi-objective constraints. Due to the increasing complexity of state-of-the-art simulations, such objective functions are not always available, leading to so-called blackbox simulations.

In contrast to existing approaches, we approximate the objective functions and design space for deterministic and stochastic blackbox simulations, even for convex and concave Pareto fronts, thus enabling optimization for arbitrary simulations. Additionally, Pareto gradient information can be obtained from our design space approximation. Our approach gains its efficiency from a novel gradient-based sampling of the parameter space in combination with a density-based clustering of sampled objective function values, resulting in a B-spline surface approximation of the feasible design space.

We have applied our new method to several benchmarks and the results show that our approach is able to efficiently approximate arbitrary objective functions. Additionally, the computed multi-objective solutions in our evaluation studies are close to the Pareto front.
Schlagwörter
Computing methodologies

; 

Modeling and simulation

; 

Model development and analysis

; 

Information systems

; 

Information systems applications

; 

Data Mining

; 

Decision support systems

; 

Objective function approximation

; 

Knowledge discovery in simulation

; 

Multi-objective optimization

; 

Spline interpolation

; 

Simulation based optimization

; 

B-Spline surface
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
SIGSIM-PADS '17: Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation  
Startseite
185
Endseite
196
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Alle Rechte vorbehalten
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Lange-Weller-Zachmann_GDS-Gradient based Density Spline Surfaces for Multiopjective Optimization in Arbitrary Simulations_2017_accepted-version_PDF-A.pdf

Size

775.1 KB

Format

Adobe PDF

Checksum

(MD5):c2a779227b1667060aaa904041ecb12b

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken