Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Platform for Studying Self-Repairing Auto-Corrections in Mobile Text Entry based on Brain Activity, Gaze, and Context
 
Zitierlink DOI
10.26092/elib/2329
Verlagslink DOI
10.1145/3313831.3376815

Platform for Studying Self-Repairing Auto-Corrections in Mobile Text Entry based on Brain Activity, Gaze, and Context

Veröffentlichungsdatum
2020
Autoren
Putze, Felix  
Ihrig, Tilman  
Schultz, Tanja  
Stuerzlinger, Wolfgang  
Zusammenfassung
Auto-correction is a standard feature of mobile text entry. While the performance of state-of-the-art auto-correct methods is usually relatively high, any errors that occur are cumbersome to repair, interrupt the flow of text entry, and challenge the user's agency over the process. In this paper, we describe a system that aims to automatically identify and repair auto-correction errors. This system comprises a multi-modal classifier for detecting auto-correction errors from brain activity, eye gaze, and context information, as well as a strategy to repair such errors by replacing the erroneous correction or suggesting alternatives. We integrated both parts in a generic Android component and thus present a research platform for studying self-repairing end-to-end systems. To demonstrate its feasibility, we performed a user study to evaluate the classification performance and usability of our approach.
Schlagwörter
Text entry

; 

Auto-correction

; 

Self-repair

; 

Eye gaze

; 

EEG
Verlag
ACM
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems  
Startseite
1
Endseite
13
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Alle Rechte vorbehalten
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Putze_Platform for studying Self-repairing auto-correction_2020_accepted-version_PDF-A.pdf

Size

3.32 MB

Format

Adobe PDF

Checksum

(MD5):a323e1a8c0d6c773110e3d3df06f34a5

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken