Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Adaptive Bewegungsplanung für taktische Entscheidungen autonomer Fahrzeuge im urbanen Umfeld: Der generische Hybrid A*
 
Zitierlink DOI
10.26092/elib/2080

Adaptive Bewegungsplanung für taktische Entscheidungen autonomer Fahrzeuge im urbanen Umfeld: Der generische Hybrid A*

Veröffentlichungsdatum
2023-02-10
Autoren
Folkers, Andreas  
Betreuer
Büskens, Christof  
Gutachter
Voßwinkel, Rick  
Zusammenfassung
Im Zentrum dieser Arbeit steht die Präsentation des generischen Hybrid A*-Algorithmus, welcher ein graphenbasiertes Suchverfahren zur Bewegungsplanung eines beweglichen Agenten darstellt. Mit den dabei vorgestellten Methoden wird der originäre Hybrid A*-Algorithmus weiterentwickelt, welcher ursprünglich als Pfadplaner für ein autonomes Fahrzeug eingeführt wurde. Die wesentlichen Modifikationen betreffen dabei zum einen die Berücksichtigung von statischen Umgebungsinformationen, welche hier durch die Berechnung eines Freibereichspolygons in abstrahierter Form dargestellt werden. Dies erlaubt nicht nur eine generische Anwendung des eigentlichen Suchalgorithmus auf eine beliebige Datengrundlage, sondern führt insbesondere für Daten aus Punktwolken auch schnell zu einem spürbaren Effizienzvorteil. Zusammen mit allen dynamischen Umgebungskomponenten wird das Freibereichspolygon zum anderen genutzt, um ein verallgemeinertes Voronoi-Potentialfeld zu definieren. Innerhalb des Suchverfahrens stellt dieses eine kontinuierliche Bewertung der zeitabhängigen Konfiguration des betrachteten Agenten bezüglich dessen Umwelt dar und setzt zeitgleich eine binäre Kollisionsüberprüfung um.
Die numerische Evaluierung des generischen Hybrid A*-Algorithmus wird im Kontext des autonomen Fahrens in urbanen Situationen durchgeführt. Dabei werden zum einen simulierte Szenarien betrachtet, bei denen ein besonderer Schwerpunkt auf den Verlauf des Suchverfahrens, die Qualität der resultierenden Lösungen sowie die benötigte Zeit für deren Berechnung gelegt wird. Zum anderen wird gezeigt, wie das Verfahren als Grundlage für die Bewegungsplanung und kurzfristige Entscheidungsfindung eines vollständig autonomen Fahrzeugs eingesetzt werden kann. Dies wird anhand von zwei autonomen Fahrten eines realen Forschungsfahrzeuges unter urbanen und dynamischen Rahmenbedingungen demonstriert.
Schlagwörter
Autonomes Fahren

; 

Bewegungsplanung

; 

Suchalgorithmen

; 

Künstliche Intelligenz
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Lizenz
https://creativecommons.org/licenses/by/4.0/
Sprache
Deutsch
Dateien
Lade...
Vorschaubild
Name

dissertation_folkers.pdf

Size

82.98 MB

Format

Adobe PDF

Checksum

(MD5):d2648b83310521f44b682989cabe9c0c

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken