Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Ehrhart Quasi-Polynomials of almost integral polytopes
 
Zitierlink DOI
10.26092/elib/1559

Ehrhart Quasi-Polynomials of almost integral polytopes

Veröffentlichungsdatum
2022-05-17
Autoren
de Vries, Christopher  
Betreuer
Feichtner, Eva-Maria  
Gutachter
Yoshinaga, Masahiko  
Zusammenfassung
In this thesis we characterize centrally symmetric lattice polytopes and lattice zonotopes through properties of the Ehrhart quasi-polynomials of almost integral polytopes. To this end, we introduce the notion of GCD-property and symmetry for quasi-polynomials. A lattice polytope is centrally symmetric if and only if the Ehrhart quasi-polynomial of every almost integral polytope derived from that polytope is symmetric. Furthermore, we show that a lattice polytope is a zonotope if and only if the Ehrhart quasi-polynomial of every almost integral polytope derived from that polytope satisfies the GCD-property. In order to describe the constituents of the Ehrhart quasi-polynomial of an almost integral polytope, we introduce the translated lattice point enumerator and prove that this function is a polynomial.
Schlagwörter
Polytopes

; 

Ehrhart Theory
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Lizenz
https://creativecommons.org/licenses/by/4.0/
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

thesis_publication.pdf

Description
Ehrhart Quasi-Polynomials of Almost Integral Polytopes
Size

495.42 KB

Format

Adobe PDF

Checksum

(MD5):97a112ad15b655f5c2b0a82af1a35b1d

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken