Rapid Uncertainty Quantification for Nonlinear Inverse Problems
File | Description | Size | Format | |
---|---|---|---|---|
00103519-1.pdf | 15 MB | Adobe PDF | View/Open |
Other Titles: | Schnelle Approximation der Unsicherheit in nichtlinearen inversen Problemen | Authors: | Gehre, Matthias | Supervisor: | Maaß, Peter ![]() |
1. Expert: | Maaß, Peter ![]() |
Experts: | Jin, Bangti ![]() |
Abstract: | In this thesis, we study a fast approximate inference method based on a technique called "Expectation Propagation" for exploring the posterior probability distribution arising from the Bayesian formulation of nonlinear inverse problems. It is capable of efficiently delivering reliable posterior mean and covariance estimates, thereby providing a solution to the inverse problem together with quantified uncertainties. Some theoretical properties of the iterative algorithm are discussed, and an efficient implementation for an important class of problems of projection type is described. The method is illustrated with two typical nonlinear inverse problems, electrical impedance tomography with complete electrode model and inverse scattering, under sparsity constraints. Numerical results for both with experimental data are presented, and compared with those by a Markov chain Monte Carlo method. The results indicate that the method is accurate and computationally highly efficient. |
Keywords: | Expectation Propagation; nonlinear inverse problem; uncertainty quantification; sparsity constraints; electrical impedance tomography; inverse scattering | Issue Date: | 17-Dec-2013 | Type: | Dissertation | Secondary publication: | no | URN: | urn:nbn:de:gbv:46-00103519-10 | Institution: | Universität Bremen | Faculty: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Appears in Collections: | Dissertationen |
Page view(s)
261
checked on Apr 3, 2025
Download(s)
77
checked on Apr 3, 2025
Google ScholarTM
Check
Items in Media are protected by copyright, with all rights reserved, unless otherwise indicated.