Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Ergodic theory of nonlinear waves in discrete and continuous excitable media
 
Zitierlink DOI
10.26092/elib/1053

Ergodic theory of nonlinear waves in discrete and continuous excitable media

Veröffentlichungsdatum
2021-08-25
Autoren
Ulbrich, Dennis  
Betreuer
Rademacher, Jens  
Gutachter
Melbourne, Ian  
Zusammenfassung
In this thesis, we analyze discrete and continuous models of excitable media with the intention to reveal similarities between both approaches in terms of wave propagation and interaction. While the discrete perspective is represented by the one-dimensional Greenberg-Hastings cellular automata (GHCA), as a continuous model we consider the $\theta$-equations which are basic partial differential equations (PDE) for pure phase dynamics. On the one hand, qualitatively, collision and annihilation of waves can be observed in both models in striking resemblance. However, on the other hand, it turns out that a quantitative comparison of discrete and continuous wave interactions is limited due to weak wave interactions in the PDE. Specifically, complexity considerations show that a direct comparison of discrete and continuous strong wave interactions is problematic.
Schlagwörter
dynamical systems

; 

partial differential equations

; 

cellular atomata

; 

ergodic theory

; 

complexity

; 

nonlinear waves

; 

excitable media
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Lizenz
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Dissertation_UlbrichDennis.pdf

Size

1.39 MB

Format

Adobe PDF

Checksum

(MD5):2ac456a9aa9b139e450db9ede70e52d1

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken