Skip navigation
SuUB logo
DSpace logo

  • Home
  • Institutions
    • University of Bremen
    • City University of Applied Sciences
    • Bremerhaven University of Applied Sciences
  • Sign on to:
    • My Media
    • Receive email
      updates
    • Edit Account details

Citation link: https://doi.org/10.26092/elib/727
Deep Player Behavior Modeling (Dissertation Johannes Pfau).pdf
OpenAccess
 
by 3.0 de

Deep player behavior modeling


File Description SizeFormat
Deep Player Behavior Modeling (Dissertation Johannes Pfau).pdf81.26 MBAdobe PDFView/Open
Authors: Pfau, Johannes 
Supervisor: Malaka, Rainer  
1. Expert: Malaka, Rainer  
Experts: Seif El-Nasr, Magy  
Abstract: 
Videospiele haben sich zum führenden Zweig der Unterhaltungsindustrie entwickelt, deren Umsätze Fernseh-, Kino- oder Musikwirtschaft übertreffen. Diese rasante Entwicklung geht einher mit ebenso zunehmenden Ansprüchen der Verbraucher in Hinsicht auf das kontinuierliche Angebot von Inhalten, Fehlervermeidung und -behebung und Erhaltung von Echtzeit-Online-Funktionalitäten - in stetig wachsenden Systemen. Während die Bemühungen, diese Probleme zu überwinden, in erster Linie mit deutlichem Aufwand intensiver manueller Arbeit verbunden sind, zielen durch künstliche Intelligenz gesteuerte Ansätze wie prozedurale Generierung, dynamische Schwierigkeitsanpassung oder autonome Testläufe darauf ab, die Last von den Schultern der Entwickler zu mindern. Für die Simulation künstlichen Verhaltens gilt Menschenähnlichkeit als eines der Hauptqualitätskriterien, dennoch konzentrieren sich die meisten Ansätze für diese Zwecke auf allgemein glaubwürdiges Verhalten. Diese Dissertation stellt das Konzept, die Architektur, Implementierung und Evaluierung von Deep Player Behavior Modeling vor, das die atomare Entscheidungsfindung einzelner Spieler abbildet und individuelle Verhaltensrepräsentationen generiert, die anschließend künstliche Agenten steuern. Nach der Evaluation durch mehrere Feldstudien in verschiedenen Spielen bewiesen diese Agenten, individuelle Strategien und Präferenzen überzeugend darzustellen, Fertigkeitsniveaus im Spiel akkurat zu repräsentieren und von ihrem ursprünglichen menschlichen Spieler nicht mehr zu unterscheidbar zu sein. Zusammen mit Literaturrecherche und Experteninterviews, die die Möglichkeiten von benutzbarer KI in Videospielen hervorheben, leistet diese Arbeit Beiträge zu den Bereichen der Spielnutzerforschung, Spiel-KI, maschinellem Lernen und Spielermodellierung und demonstriert bedeutende Fortschritte in den Anwendungsbereichen der dynamischen Schwierigkeitsanpassung, Spielersubstitution und automatisierten Spieltests.
Keywords: Player Modeling; Video Games; Artificial Intelligence
Issue Date: 17-May-2021
Type: Dissertation
Secondary publication: no
DOI: 10.26092/elib/727
URN: urn:nbn:de:gbv:46-elib49307
Institution: Universität Bremen 
Faculty: Fachbereich 03: Mathematik/Informatik (FB 03) 
Appears in Collections:Dissertationen

  

Page view(s)

512
checked on May 11, 2025

Download(s)

263
checked on May 11, 2025

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons

Legal notice -Feedback -Data privacy
Media - Extension maintained and optimized by Logo 4SCIENCE