Skip navigation
SuUB logo
DSpace logo

  • Home
  • Institutions
    • University of Bremen
    • City University of Applied Sciences
    • Bremerhaven University of Applied Sciences
  • Sign on to:
    • My Media
    • Receive email
      updates
    • Edit Account details

Citation link: http://nbn-resolving.de/urn:nbn:de:gbv:46-00103151-12
00103151-1.pdf
OpenAccess
 
copyright

Shell formation and microstructure of the ocean quahog Arctica islandica: Does ocean acidification matter?


File Description SizeFormat
00103151-1.pdf29.44 MBAdobe PDFView/Open
Other Titles: Schalenbau und Mikrostruktur der Islandmuschel Arctica islandica: Beeinflusst durch Ozeanversauerung
Authors: Stemmer, Kristina 
Supervisor: Brey, Thomas
1. Expert: Brey, Thomas
2. Expert: Niehoff, Barbara
Abstract: 
Carbon dioxide concentration (pCO2) in the ocean is steadily increasing causing a drop of pH, consequently turning the surface seawater more acidic. Due to possible adaptation mechanisms some marine organisms can cope better with high pCO2 and low pH than others. The ocean quahog Arctica islandica is widely distributed in the North Atlantic region. Populations of this species are also well established in the high fluctuating environment of the Kiel Bight in the Western Baltic Sea and show high tolerance to environmental parameters like salinity, temperature and low oxygen levels. In my thesis I am interested in the performance of A. islandica from Kiel Bight to build and maintain its shell in a high pCO2 environment and the general aspects of bivalve shell properties as well as the site of calcification within the bivalve as a prerequisite for a mechanistic understanding of the biomineralization process. This thesis summarizes i) A. islandica from Kiel Bight populations is resistant and most likely pre-adapted towards elevated pCO2 over a short period of time (90 days) and contributes to the fundamental understanding of ii) single organic shell-compounds identified as pigment polyenes, that are not habitat related and may contribute to shell formation and iii) the calcification process itself is not happening inside the bulk EPF but rather within a supersaturated microsite created by active ion pumping by the OME. Understanding the biomineralization process and all components involved is crucial and thus the next challenge in order to estimate the robustness of A. islandica and other marine calcifiers in a high pCO2 world.
Keywords: carbon dioxide, calcification, environmental stressors, bivalve shell, acidification, adaptation, transmembrane ion transport, pH, calcium, polyene
Issue Date: 16-Apr-2013
Type: Dissertation
URN: urn:nbn:de:gbv:46-00103151-12
Institution: Universität Bremen 
Faculty: FB2 Biologie/Chemie 
Appears in Collections:Dissertationen

  

Page view(s)

46
checked on Jan 27, 2021

Download(s)

5
checked on Jan 27, 2021

Google ScholarTM

Check


Items in Media are protected by copyright, with all rights reserved, unless otherwise indicated.

Legal notice -Feedback -Data privacy
Media - Extension maintained and optimized by Logo 4SCIENCE