Analyzing and Predicting Material Flow Networks Using Stochastic Block Models and Statistical Graph Embeddings
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Dissertation_Funke.pdf | 5.65 MB | Adobe PDF | Anzeigen |
Autor/Autorin: | Funke, Thorben | BetreuerIn: | Freitag, Michael | 1. GutachterIn: | Freitag, Michael | Weitere Gutachter:innen: | Becker, Till | Zusammenfassung: | Manufacturing and logistics systems consist of many complexly interacting elements. Starting from social science, the field of complex networks has developed concepts and methods to analyze and predict networks, such as friendship networks or protein interactions. However, although these examples have equivalents in the form of company networks and interactions within manufacturing processes, more sophisticated methods have not yet been transferred to manufacturing and logistics. We propose to apply methods from clustering and graph embedding on representations of machine interactions to analyze the structural stability of manufacturing systems and to predict structural changes of such systems. |
Schlagwort: | complex networks; graph clustering; graph representations; material flow networks | Veröffentlichungsdatum: | 10-Dez-2020 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | DOI: | 10.26092/elib/500 | URN: | urn:nbn:de:gbv:46-elib47039 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 04: Produktionstechnik, Maschinenbau & Verfahrenstechnik (FB 04) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
394
checked on 27.11.2024
Download(s)
360
checked on 27.11.2024
Google ScholarTM
Prüfe
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons