Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Analyzing and Predicting Material Flow Networks Using Stochastic Block Models and Statistical Graph Embeddings
 
Zitierlink DOI
10.26092/elib/500

Analyzing and Predicting Material Flow Networks Using Stochastic Block Models and Statistical Graph Embeddings

Veröffentlichungsdatum
2020-12-10
Autoren
Funke, Thorben  
Betreuer
Freitag, Michael  
Gutachter
Becker, Till  
Zusammenfassung
Manufacturing and logistics systems consist of many complexly interacting elements. Starting from social science, the field of complex networks has developed concepts and methods to analyze and predict networks, such as friendship networks or protein interactions. However, although these examples have equivalents in the form of company networks and interactions within manufacturing processes, more sophisticated methods have not yet been transferred to manufacturing and logistics. We propose to apply methods from clustering and graph embedding on representations of machine interactions to analyze the structural stability of manufacturing systems and to predict structural changes of such systems.
Schlagwörter
complex networks

; 

graph clustering

; 

graph representations

; 

material flow networks
Institution
Universität Bremen  
Fachbereich
Fachbereich 04: Produktionstechnik, Maschinenbau & Verfahrenstechnik (FB 04)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Lizenz
http://creativecommons.org/licenses/by/3.0/de/
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Dissertation_Funke.pdf

Size

5.52 MB

Format

Adobe PDF

Checksum

(MD5):23351ff50db00fd15504736558cfa802

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken