Double Backpropagation with Applications to Robustness and Saliency Map Interpretability
Veröffentlichungsdatum
2020-02-14
Autoren
Betreuer
Gutachter
Zusammenfassung
This thesis is concerned with works in connection to double backpropagation, which is a phenomenon that arises when first-order optimization methods are applied to a neural network's loss function, if this contains derivatives. Its connection to robustness and saliency map interpretability is explained.
Schlagwörter
deep learning
;
neural networks
;
artificial intelligence
;
double backpropagation
;
robustness
;
saliency map
;
interpretability
;
computer vision
;
MALDI
;
mass spectrometry
;
machine learning
;
data science
;
statistics
Institution
Fachbereich
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
00108645-1.pdf
Size
22.26 MB
Format
Adobe PDF
Checksum
(MD5):cc2591eb2802b996c46c0111386adb82