Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Toric Arrangements
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00102859-13

Toric Arrangements

Veröffentlichungsdatum
2012-09-29
Autoren
d'Antonio, Giacomo  
Betreuer
Feichtner, Eva-Maria  
Gutachter
De Concini, Corrado  
Zusammenfassung
This thesis addresses some fundamental questions on the topology of toric arrangement complements. We prove two main result which generalize well known results about hyperplane arrangements. Namely, we define a Salvetti complex for toric arrangements and prove that it encodes the topology of the complement of the corresponding arrangement. Then we use the same complex to prove that complements of toric arrangements are minimal spaces and therefore have no torsion in homology and cohomology. In doing this we use a number of combinatorial tools. In fact, we need to extend some of the usual notions of combinatorial topology, to adapt them to our purposes.
Schlagwörter
toric arrangement

; 

hyperplane arrangement

; 

salvetti complex

; 

acyclic category

; 

discrete morse theory
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00102859-1.pdf

Size

917.48 KB

Format

Adobe PDF

Checksum

(MD5):8f757dbfdf5cc1f2329b2d8b57b60b1f

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken