Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Input-to-state stability of infinite-dimensional control systems
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00102683-16

Input-to-state stability of infinite-dimensional control systems

Veröffentlichungsdatum
2012-05-25
Autoren
Mironchenko, Andrii  
Betreuer
Dashkovskiy, Sergey  
Gutachter
Wirth, Fabian  
Zusammenfassung
We define the notion of local ISS-Lyapunov function and prove, that existence of a local ISS-Lyapunov function implies local ISS (LISS) of the system. Then we consider infinite-dimensional systems generated by differential equations in Banach spaces. We prove, that an interconnection of such systems is ISS if all the subsystems are ISS and the small-gain condition holds. Next we show that a system is LISS provided its linearization is ISS. In the second part of the thesis we deal with infinite-dimensional impulsive systems. We prove, that existence of an ISS Lyapunov function (not necessarily exponential) for an impulsive system implies ISS of the system over impulsive sequences satisfying nonlinear fixed dwell-time condition. Also we prove, that an impulsive system, which possesses an exponential ISS Lyapunov function is uniform ISS over impulse time sequences, satisfying the generalized average dwell-time condition. Then we generalize small-gain theorems to the case of impulsive systems.
Schlagwörter
input-to-state stability

; 

Lyapunov functions

; 

linearization

; 

control theory

; 

impulsive systems

; 

infinite-dimensional systems

; 

dwell-time conditions
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00102683-1.pdf

Size

870.68 KB

Format

Adobe PDF

Checksum

(MD5):1248ca76e7f0b4b0670a5e6010226b28

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken