Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Temporal Pattern Mining in Dynamic Environments
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000107081

Temporal Pattern Mining in Dynamic Environments

Veröffentlichungsdatum
2007-05-30
Autoren
Lattner, Andreas  
Betreuer
Herzog, Otthein  
Gutachter
Wrobel, Stefan  
Zusammenfassung
In this work an approach is presented which applies unsupervised symbolic learning to a qualitative abstraction of dynamic scenes in order to create frequent temporal patterns and prediction rules. Having in mind rather complex situations with different objects of various types and relations and temporal interrelations of actions and events, the approach provides means to mine complex temporal patterns taking into account these aspects. It is an extension of the association rule mining algorithm Apriori and combines ideas from relational as well as sequential association rule mining approaches. Temporal interrelations between predicates of patterns are represented qualitatively by interval relations as, e.g., introduced by Allen and Freksa. Additionally, variable unification allows to connect variables of (different) predicates in a complex pattern in order to deal with relational data. As a third aspect, concept restrictions are learned for variables of a pattern.
Schlagwörter
Temporal Pattern Mining

; 

Prediction Rule Generation

; 

Association Rule Mining

; 

Qualitative Representations

; 

RoboCup
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00010708.pdf

Size

1.63 MB

Format

Adobe PDF

Checksum

(MD5):4bd2cfffa38ec204ba29f70ddb650c50

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken