Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Representation Theoretical Construction of The Classical Limit and Spectral Statistics of Generic Hamiltonian Operators
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000104949

Representation Theoretical Construction of The Classical Limit and Spectral Statistics of Generic Hamiltonian Operators

Veröffentlichungsdatum
2006-11-09
Autoren
Schäfer, Ingolf  
Betreuer
Oeljeklaus, Eberhard  
Gutachter
Huckleberry, Alan  
Zusammenfassung
Starting with an operator in the universal enveloping algebra of a semi-simple, complex Lie group the nearest neighbor statistics of the spectra of this operator along a sequence of representations are discussed.After a short introduction in chapter 1 this problem is motivated by a general construction of the classical limit for quantum mechanical systems, which is adopted to this setting, in chapter 2. In chapter 3 it is shown that for simple operators, i.e., operator of the Lie algebra the nearest neighbor statistics along a sequence of irreducible representations converge to the Dirac measure. After a suitable completion of the universal enveloping algebra the convergence to Poisson statistics is proved in chapter 4 for the exponentials of generic operators. The proof makes use of a combinatorial inequality of the Katz-Sarnak type for tori, which is proved in chapter 5. In the appendix the necessary facts from group theory and the theory of nearest neighbor distributions are gathered.
Schlagwörter
Classical Limit

; 

Representation Theory

; 

Random Matrix Theory
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00010494.pdf

Size

936.09 KB

Format

Adobe PDF

Checksum

(MD5):59f0bf54897f6ca3a40287f682ec1dda

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken