Remarks on Parikh-Recognizable Omega-languages
Veröffentlichungsdatum
2024
Zusammenfassung
Several variants of Parikh automata on infinite words were recently introduced by Guha et al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter machine as introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau and Stiebe showed that every ω-language recognized by a blind counter machine is of the form ⋃_iU_iV_i^ω for Parikh recognizable languages U_i, V_i, but blind counter machines fall short of characterizing this class of ω-languages. They posed as an open problem to find a suitable automata-based characterization. We introduce several additional variants of Parikh automata on infinite words that yield automata characterizations of classes of ω-language of the form ⋃_iU_iV_i^ω for all combinations of languages U_i, V_i being regular or Parikh-recognizable. When both U_i and V_i are regular, this coincides with Büchi’s classical theorem. We study the effect of ε-transitions in all variants of Parikh automata and show that almost all of them admit ε-elimination. Finally we study the classical decision problems with applications to model checking.
Schlagwörter
Parikh automata
;
blind counter machines
;
infinite words
;
Büchi’s theorem
Verlag
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Institution
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
32nd EACSL Annual Conference on Computer Science Logic (CSL 2024) = Leibniz International Proceedings in Informatics (LIPIcs), Band 288
Startseite
31:1
Endseite
31:21
Zweitveröffentlichung
Ja
Dokumentversion
Published Version
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
Grobler_Sabellek_Siebertz_Remarks on Parikh-Recognizable Omega-languages_2024_published-version.pdf
Size
1.12 MB
Format
Adobe PDF
Checksum
(MD5):965778c689d1f857930e6d1dc285ff37
