Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Deep learning detection of melanoma metastases in lymph nodes.
 
Zitierlink DOI
10.26092/elib/4168
Verlagslink DOI
10.1016/j.ejca.2023.04.023

Deep learning detection of melanoma metastases in lymph nodes.

Veröffentlichungsdatum
2023-07
Autoren
Jansen, Philipp
Otero Baguer, Daniel  
Duschner, Nicole
Le’Clerc Arrastia, Jean  
Schmidt, Maximilian  
Landsberg, Jennifer
Wenzel, Jörg
Schadendorf, Dirk
Hadaschik, Eva
Maaß, Peter  
Schaller, Jörg
Griewank, Klaus Georg
Zusammenfassung
Background: In melanoma patients, surgical excision of the first draining lymph node, the sentinel lymph node (SLN), is a routine procedure to evaluate lymphogenic metastases. Metastasis detection by histopathological analysis assesses multiple tissue levels with hematoxylin and eosin and immunohistochemically stained glass slides. Considering the amount of tissue to analyze, the detection of metastasis can be highly time-consuming for pathologists. The application of artificial intelligence in the clinical routine has constantly increased over the past few years.

Methods: In this multi-center study, a deep learning method was established on histological tissue sections of sentinel lymph nodes collected from the clinical routine. The algorithm was trained to highlight potential melanoma metastases for further review by pathologists, without relying on supplementary immunohistochemical stainings (e.g. anti-S100, anti-MelanA).

Results: The established method was able to detect the existence of metastasis on individual tissue cuts with an area under the curve of 0.9630 and 0.9856 respectively on two test cohorts from different laboratories. The method was able to accurately identify tumour deposits>0.1 mm and, by automatic tumour diameter measurement, classify these into 0.1 mm to -1.0 mm and>1.0 mm groups, thus identifying and classifying metastasis currently relevant for assessing prognosis and stratifying treatment.

Conclusions: Our results demonstrate that AI-based SLN melanoma metastasis detection has great potential and could become a routinely applied aid for pathologists. Our current study focused on assessing established parameters; however, larger future AI-based studies could identify novel biomarkers potentially further improving SLN-based prognostic and therapeutic predictions for affected patients.
Schlagwörter
Artificial intelligence

; 

Computer-aided diagnosis (CAD)

; 

Digital pathology

; 

Lymph nodes

; 

Melanoma metastasis

; 

U-Net

; 

Whole-slide image (WSI)
Verlag
Elsevier
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Zentrale Wissenschaftliche Einrichtungen und Kooperationen  
Institute
AG Technomathematik  
MAPEX Center for Materials and Processes  
Dokumenttyp
Wissenschaftlicher Artikel
Zeitschrift/Sammelwerk
European Journal of Cancer
ISSN
1879-0852
Band
188
Startseite
161
Endseite
170
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Jansen et al_Deep learning detection of melanoma metastases in lymph nodes_2023_accepted-version.pdf

Size

10.93 MB

Format

Adobe PDF

Checksum

(MD5):a2a0f5071f096b7de0c0a2db5f00e524

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken