Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Aspects of Ocean Circulation with Finite Element Modelling
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000009862

Aspects of Ocean Circulation with Finite Element Modelling

Veröffentlichungsdatum
2004-06-17
Autoren
Harig, Sven  
Betreuer
Olbers, Dirk  
Gutachter
Hiller, Wolfgang  
Zusammenfassung
This thesis deals with development and evaluation of the three dimensional, nonstationary ocean model FEOM:sub:0:/sub: (basic version of the Finite Element Ocean Model FEOM). This model is based on the Finite Element Method (FEM) which allows for the use of unstructured grids with variable resolution. The first part of the thesis introduces the governing equations, the mathematical formulation as well as the discretisation using FEM. After introducing the discrete form of the equations some details on the numerical implementation are given.The second part of the thesis contains applications of FEOM:sub:0:/sub: to different oceanographic tasks under idealised conditions. Comparisons to analytical results as well as to results of other numerical models in corresponding experiments are presented.The first application investigates the propagation of waves in a stratified ocean. The model shows nice correspondence to theoretically obtained wave properties as well as to results of the Modular Ocean Model (MOM). The second investigation considers the wind driven ocean circulation, especially the resulting vertical structure of the flow field. The influence of topography is examined, the results coincide with the predictions of linear theory. Finally an idealised overflow scenario is investigated. The flow of dense water on a slope poses a special problem for numerical ocean models. An international intercomparison study (DOME: Dynamics of Overflow Mixing and Entrainment) was conceived in order to gain insight into the capabilities of different numerical models in reproducing this process. FEOM:sub:0:/sub: is applied to the idealised DOME setup with and without interior density stratification. In case of a homogeneous interior a variability in the overflow rate of several days shows up, the model gives a reasonable path of the plume and reproduces the theoretically obtained dependence of the overflow transport on Coriolis parameter and density structure.
Schlagwörter
Finite Element modelling

; 

ocean modelling

; 

validation

; 

wave propagation

; 

overflow processes

; 

DOME intercomparison study
Institution
Universität Bremen  
Fachbereich
Fachbereich 01: Physik/Elektrotechnik (FB 01)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

E-Diss986_harig_s.pdf

Size

34.6 MB

Format

Adobe PDF

Checksum

(MD5):e5eec94d9005c4eff28ae70e62ee4c86

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken