Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Renormalization Theory for Hamiltonian Systems
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000004405

Renormalization Theory for Hamiltonian Systems

Veröffentlichungsdatum
2002-12-16
Autoren
Pronine, Mikhail  
Betreuer
Richter, Peter H.  
Gutachter
Schwegler, Helmut  
Zusammenfassung
We study the onset of widespread chaos in Hamiltonian systems with two degrees of freedom. Such systems and their stability properties are of interest in diverse fields (celestial mechanics, plasma physics, chemical physics to name just a few). Due to topological reasons, two-dimensional invariant tori of irrational winding numbers represent barriers to widespread chaos. The breakup of the "last" invariant torus can be viewed as the threshold to widespread chaos. We use the renormalization group approach in order to describe the breakup of invariant tori of irrational winding numbers. An approximate renormalization scheme is derived for this purpose.The scheme is implemented with the help of the "Maple" computer algebra system. The renormalization group approach is applied to a number of systems. We discuss the paradigm Hamiltonian of Escande and Doveil, the Walker and Fordmodel, a model of the ethane molecule, the double pendulum, the Baggott system, limacon billiards. The Poincare surface of section technique is used in order to study numerically the dynamic behavior of the systems and to check the results of the renormalization theory.
Schlagwörter
Hamiltonian Systems

; 

Renormalization Theory

; 

KAM-Tori
Institution
Universität Bremen  
Fachbereich
Fachbereich 01: Physik/Elektrotechnik (FB 01)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

E-Diss440_Pronine.pdf

Size

3.55 MB

Format

Adobe PDF

Checksum

(MD5):b011b10555284cbdc0696776b548885b

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken