Dynamic Inverse Problems for Wave Phenomena
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
00107730-1.pdf | 4.21 MB | Adobe PDF | Anzeigen |
Sonstige Titel: | Dynamische Inverse Probleme für Wellenphänomene | Autor/Autorin: | Gerken, Thies | BetreuerIn: | Rieder, Andreas | 1. GutachterIn: | Rieder, Andreas | Weitere Gutachter:innen: | Schmidt, Alfred | Zusammenfassung: | In this work, we deal with second-order hyperbolic partial differential equations that include time- and space-dependent coefficients, and the inverse problems of identifying these coefficients based on their effect on the equationa s solution. We present the needed theory for such equations, including some regularity results for their solution. This allows to state and analyze the inverse problems, even in an abstract setting where time-dependent operators are sought. Subsequently, we show how these results can be applied to actual partial differential equations. We give a detailed demonstration in the context of the acoustic wave equation. Our results allow the identification of a time- and space-dependent wave speed and mass density in such a setting, and we give an extensive numerical analysis for this case. We also outline how the abstract framework can be applied to other equations, like simple models for electromagnetic waves. |
Schlagwort: | inverse problems; evolution equations; wave equation; dynamic inverse problems; time-dependent parameters; elastic wave equation; electrodynamics; ill-posedness | Veröffentlichungsdatum: | 7-Okt-2019 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | URN: | urn:nbn:de:gbv:46-00107730-18 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
1.145
checked on 15.01.2025
Download(s)
322
checked on 15.01.2025
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.