Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Interactive Multiagent Adaptation of Individual Classification Models for Decision Support
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00107710-17

Interactive Multiagent Adaptation of Individual Classification Models for Decision Support

Veröffentlichungsdatum
2019-07-02
Autoren
Warden, Tobias  
Betreuer
Herzog, Otthein  
Gutachter
Lamersdorf, Winfried  
Zusammenfassung
An essential prerequisite for informed decision-making of intelligent agents is direct access to empirical knowledge for situation assessment. This contribution introduces an agent-oriented knowledge management framework for learning agents facing impediments in self-contained acquisition of classification models. The framework enables the emergence of dynamic knowledge networks among benevolent agents forming a community of practice in open multiagent systems. Agents in an advisee role are enabled to pinpoint learning impediments in terms of critical training cases and to engage in a goal-directed discourse with an advisor panel to overcome identified issues. The advisors provide arguments supporting and hence explaining those critical cases. Using such input as additional background knowledge, advisees can adapt their models in iterative relearning organized as a search through model space. An extensive empirical evaluation in two real-world domains validates the presented approach.
Schlagwörter
Multiagent Systems

; 

Agent-oriented Knowledge Management

; 

Interacting Learning
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00107710-1.pdf

Size

6.39 MB

Format

Adobe PDF

Checksum

(MD5):b63d805b26dd7c7c60b27f2116e8d567

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken